Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Neuroimage ; 209: 116477, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31874257

ABSTRACT

Alterations induced by prenatal exposure to nicotine have been observed in experimental (rodent) studies. While numerous developmental outcomes have been associated with prenatal exposure to maternal cigarette smoking (PEMCS) in humans, the possible relation with brain structure is less clear. Here we sought to elucidate the relation between PEMCS and structural properties of human corpus callosum in adolescence and early adulthood in a total of 1,747 youth. We deployed three community-based cohorts of 446 (age 25-27 years, 46% exposed), 934 (age 12-18 years, 47% exposed) and 367 individuals (age 18-21 years, 9% exposed). A mega-analysis revealed lower mean diffusivity in the callosal segments of exposed males. We speculate that prenatal exposure to maternal cigarette smoking disrupts the early programming of callosal structure and increases the relative portion of small-diameter fibres.


Subject(s)
Cigarette Smoking , Corpus Callosum , Magnetic Resonance Imaging , Neuroimaging , Prenatal Exposure Delayed Effects , Adolescent , Adult , Child , Cigarette Smoking/adverse effects , Cohort Studies , Corpus Callosum/diagnostic imaging , Corpus Callosum/embryology , Corpus Callosum/pathology , Diffusion Tensor Imaging , England , Female , Finland , Humans , Male , Pregnancy , Prenatal Exposure Delayed Effects/diagnostic imaging , Prenatal Exposure Delayed Effects/pathology , Quebec , Sex Factors , Young Adult
2.
Cereb Cortex ; 29(8): 3351-3362, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30169567

ABSTRACT

Previous in vivo studies revealed robust age-related variations in structural properties of the human cerebral cortex during adolescence. Neurobiology underlying these maturational phenomena is largely unknown. Here we employ a virtual-histology approach to gain insights into processes associated with inter-regional variations in cortical microstructure and its maturation, as indexed by magnetization transfer ratio (MTR). Inter-regional variations in MTR correlate with inter-regional variations in expression of genes specific to pyramidal cells (CA1) and ependymal cells; enrichment analyses indicate involvement of these genes in dendritic growth. On the other hand, inter-regional variations in the change of MTR during adolescence correlate with inter-regional profiles of oligodendrocyte-specific gene expression. Complemented by a quantitative hypothetical model of the contribution of surfaces associated with dendritic arbor (1631 m2) and myelin (48 m2), these findings suggest that MTR signals are driven mainly by macromolecules associated with dendritic arbor while maturational changes in the MTR signal are associated with myelination.


Subject(s)
Cerebral Cortex/diagnostic imaging , Dendrites/metabolism , Myelin Sheath/metabolism , Neuronal Plasticity/genetics , Adolescent , Brain/diagnostic imaging , Brain/growth & development , Brain/metabolism , CA1 Region, Hippocampal/metabolism , Cerebral Cortex/growth & development , Ependyma/cytology , Female , Gene Expression Regulation, Developmental/genetics , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Oligodendroglia/metabolism , Pyramidal Cells/metabolism , Sex Factors , Transcriptome , Young Adult
3.
Obes Rev ; 19(9): 1248-1255, 2018 09.
Article in English | MEDLINE | ID: mdl-30035359

ABSTRACT

INTRODUCTION: Uncontrolled family factors may bias the estimation of the association between maternal smoking during pregnancy and offspring body mass index (BMI). The objective was to assess if there is an association between maternal smoking during pregnancy and offspring BMI z-score independent of factors in the siblings' shared environment and if such association is linear. METHODS: We performed an individual patient data meta-analysis using five studies providing sibling data (45,299 children from 14,231 families). In a multi-level model, separating within-family and between-family effects and with random intercept for families, we analysed the dose-response association between maternal number of cigarettes per day during pregnancy and offspring's BMI z-score using B-splines to allow for non-linear associations. RESULTS: A linear within-family effect for number of cigarettes smoked in the range from 1 to 30 cigarettes per day on the offspring's BMI z-score was observed. Each additional cigarette per day between sibling pregnancies resulted in an increase in BMI z-score of 0.007 (95% CI [0.006, 0.009]). A between family-effect emerged only with doses ≥25 cigarettes per day. CONCLUSIONS: The number of cigarettes mothers smoke per day during pregnancy is positively associated with offspring BMI z-score even among siblings, suggesting that the association is not entirely explained by confounding by family factors.


Subject(s)
Body Mass Index , Prenatal Exposure Delayed Effects/physiopathology , Smoking , Female , Humans , Pregnancy
4.
Dev Cogn Neurosci ; 30: 191-199, 2018 04.
Article in English | MEDLINE | ID: mdl-29567584

ABSTRACT

There is considerable inter-individual variability in the rate at which working memory (WM) develops during childhood and adolescence, but the neural and genetic basis for these differences are poorly understood. Dopamine-related genes, striatal activation and morphology have been associated with increased WM capacity after training. Here we tested the hypothesis that these factors would also explain some of the inter-individual differences in the rate of WM development. We measured WM performance in 487 healthy subjects twice: at age 14 and 19. At age 14 subjects underwent a structural MRI scan, and genotyping of five single nucleotide polymorphisms (SNPs) in or close to the dopamine genes DRD2, DAT-1 and COMT, which have previously been associated with gains in WM after WM training. We then analyzed which biological factors predicted the rate of increase in WM between ages 14 and 19. We found a significant interaction between putamen size and DAT1/SLC6A3 rs40184 polymorphism, such that TC heterozygotes with a larger putamen at age 14 showed greater WM improvement at age 19. The effect of the DAT1 polymorphism on WM development was exerted in interaction with striatal morphology. These results suggest that development of WM partially share neuro-physiological mechanism with training-induced plasticity.


Subject(s)
Corpus Striatum/physiopathology , Dopamine Plasma Membrane Transport Proteins/genetics , Memory, Short-Term/physiology , Adolescent , Adult , Female , Humans , Learning , Male , Polymorphism, Genetic , Young Adult
5.
Mol Psychiatry ; 23(3): 621-628, 2018 03.
Article in English | MEDLINE | ID: mdl-28607459

ABSTRACT

Ubiquitously expressed genes have been implicated in a variety of specific behaviors, including responses to ethanol. However, the mechanisms that confer this behavioral specificity have remained elusive. Previously, we showed that the ubiquitously expressed small GTPase Arf6 is required for normal ethanol-induced sedation in adult Drosophila. Here, we show that this behavioral response also requires Efa6, one of (at least) three Drosophila Arf6 guanine exchange factors. Ethanol-naive Arf6 and Efa6 mutants were sensitive to ethanol-induced sedation and lacked rapid tolerance upon re-exposure to ethanol, when compared with wild-type flies. In contrast to wild-type flies, both Arf6 and Efa6 mutants preferred alcohol-containing food without prior ethanol experience. An analysis of the human ortholog of Arf6 and orthologs of Efa6 (PSD1-4) revealed that the minor G allele of single nucleotide polymorphism (SNP) rs13265422 in PSD3, as well as a haplotype containing rs13265422, was associated with an increased frequency of drinking and binge drinking episodes in adolescents. The same haplotype was also associated with increased alcohol dependence in an independent European cohort. Unlike the ubiquitously expressed human Arf6 GTPase, PSD3 localization is restricted to the brain, particularly the prefrontal cortex (PFC). Functional magnetic resonance imaging revealed that the same PSD3 haplotype was also associated with a differential functional magnetic resonance imaging signal in the PFC during a Go/No-Go task, which engages PFC-mediated executive control. Our translational analysis, therefore, suggests that PSD3 confers regional specificity to ubiquitous Arf6 in the PFC to modulate human alcohol-drinking behaviors.


Subject(s)
Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Nerve Tissue Proteins/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Animals , Drosophila , Drosophila Proteins/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Guanine Nucleotide Exchange Factors/genetics , Humans , Male , Nerve Tissue Proteins/genetics
6.
Mol Psychiatry ; 23(5): 1303-1319, 2018 05.
Article in English | MEDLINE | ID: mdl-28397836

ABSTRACT

In many societies, the majority of adults regularly consume alcohol. However, only a small proportion develops alcohol addiction. Individuals at risk often show a high sensation-seeking/low-anxiety behavioural phenotype. Here we asked which role EF hand domain containing 2 (EFhd2; Swiprosin-1) plays in the control of alcohol addiction-associated behaviours. EFhd2 knockout (KO) mice drink more alcohol than controls and spontaneously escalate their consumption. This coincided with a sensation-seeking and low-anxiety phenotype. A reversal of the behavioural phenotype with ß-carboline, an anxiogenic inverse benzodiazepine receptor agonist, normalized alcohol preference in EFhd2 KO mice, demonstrating an EFhd2-driven relationship between personality traits and alcohol preference. These findings were confirmed in a human sample where we observed a positive association of the EFhd2 single-nucleotide polymorphism rs112146896 with lifetime drinking and a negative association with anxiety in healthy adolescents. The lack of EFhd2 reduced extracellular dopamine levels in the brain, but enhanced responses to alcohol. In confirmation, gene expression analysis revealed reduced tyrosine hydroxylase expression and the regulation of genes involved in cortex development, Eomes and Pax6, in EFhd2 KO cortices. These findings were corroborated in Xenopus tadpoles by EFhd2 knockdown. Magnetic resonance imaging (MRI) in mice showed that a lack of EFhd2 reduces cortical volume in adults. Moreover, human MRI confirmed the negative association between lifetime alcohol drinking and superior frontal gyrus volume. We propose that EFhd2 is a conserved resilience factor against alcohol consumption and its escalation, working through Pax6/Eomes. Reduced EFhd2 function induces high-risk personality traits of sensation-seeking/low anxiety associated with enhanced alcohol consumption, which may be related to cortex function.


Subject(s)
Alcoholism/genetics , Anxiety/genetics , Calcium-Binding Proteins/genetics , Adolescent , Adult , Alcohol Drinking/genetics , Animals , Anxiety Disorders/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide , Risk-Taking , Xenopus laevis
7.
Neuroimage ; 152: 108-118, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28254453

ABSTRACT

A number of structural properties of white matter can be assessed in vivo using multimodal magnetic resonance imaging (MRI). We measured profiles of R1 and R2 relaxation rates, myelin water fraction (MWF) and diffusion tensor measures (fractional anisotropy [FA], mean diffusivity [MD]) across the mid-sagittal section of the corpus callosum in two samples of young individuals. In Part 1, we compared histology-derived axon diameter (Aboitiz et al., 1992) to MRI measures obtained in 402 young men (19.55 ± 0.84 years) recruited from the Avon Longitudinal Study on Parents and Children. In Part 2, we examined sex differences in FA, MD and magnetization transfer ratio (MTR) across the corpus callosum in 433 young (26.50 ± 0.51 years) men and women recruited from the Northern Finland Birth Cohort 1986. We found that R1, R2, and MWF follow the anterior-to-posterior profile of small-axon density. Sex differences in mean MTR were similar across the corpus callosum (males > females) while these in FA differed by the callosal segment (Body: M>F; Splenium: F>M). We suggest that the values of R1, R2 and MWF are driven by high surface area of myelin in regions with high density of "small axons".


Subject(s)
Corpus Callosum/anatomy & histology , Corpus Callosum/physiology , Sex Characteristics , Adolescent , Adult , Anisotropy , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Male , White Matter/anatomy & histology , White Matter/physiology , Young Adult
8.
Handb Clin Neurol ; 138: 17-37, 2016.
Article in English | MEDLINE | ID: mdl-27637950

ABSTRACT

Population neuroscience endeavors to identify influences shaping the human brain from conception onwards, thus generating knowledge relevant for building and maintaining brain health throughout the life span. This can be achieved by studying large samples of participants drawn from the general population and evaluated with state-of-the-art tools for assessing (a) genes and their regulation; (b) external and internal environments; and (c) brain properties. This chapter reviews the three elements of population neuroscience (principles, tools, innovations, limitations), and discusses future directions in this field.


Subject(s)
Brain , Gene-Environment Interaction , Neurosciences/methods , Population Dynamics , Humans
9.
Transl Psychiatry ; 6(6): e845, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27351599

ABSTRACT

Up to 40% of youth with autism spectrum disorder (ASD) also suffer from anxiety, and this comorbidity is linked with significant functional impairment. However, the mechanisms of this overlap are poorly understood. We investigated the interplay between ASD traits and anxiety during reward processing, known to be affected in ASD, in a community sample of 1472 adolescents (mean age=14.4 years) who performed a modified monetary incentive delay task as part of the Imagen project. Blood-oxygen-level dependent (BOLD) responses to reward anticipation and feedback were compared using a 2x2 analysis of variance test (ASD traits: low/high; anxiety symptoms: low/high), controlling for plausible covariates. In addition, we used a longitudinal design to assess whether neural responses during reward processing predicted anxiety at 2-year follow-up. High ASD traits were associated with reduced BOLD responses in dorsal prefrontal regions during reward anticipation and negative feedback. Participants with high anxiety symptoms showed increased lateral prefrontal responses during anticipation, but decreased responses following feedback. Interaction effects revealed that youth with combined ASD traits and anxiety, relative to other youth, showed high right insula activation when anticipating reward, and low right-sided caudate, putamen, medial and lateral prefrontal activations during negative feedback (all clusters PFWE<0.05). BOLD activation patterns in the right dorsal cingulate and right medial frontal gyrus predicted new-onset anxiety in participants with high but not low ASD traits. Our results reveal both quantitatively enhanced and qualitatively distinct neural correlates underlying the comorbidity between ASD traits and anxiety. Specific neural responses during reward processing may represent a risk factor for developing anxiety in ASD youth.


Subject(s)
Anxiety Disorders/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Magnetic Resonance Imaging , Reward , Adolescent , Anticipation, Psychological/physiology , Anxiety Disorders/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Comorbidity , Dominance, Cerebral/physiology , Feedback , Female , Follow-Up Studies , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Longitudinal Studies , Male , Oxygen/blood , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
10.
Pediatr Obes ; 10(5): 395-402, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26364941

ABSTRACT

BACKGROUND: Excess visceral fat is a major risk factor for hypertension. Enhanced blood pressure (BP) reactivity and delayed BP recovery from physical and mental challenges predict future hypertension. OBJECTIVES: Determine whether visceral fat is associated with higher BP reactivity and delayed BP recovery from physical and mental challenges during adolescence. METHODS: In a community-based sample of 283 male and 308 female adolescents, we measured visceral fat with magnetic resonance imaging, total body fat with bioimpedance, and beat-by-beat BP with a Finometer at rest and during physical (10-min standing) and mental (2-min math stress) challenges. RESULTS: Males vs. females showed greater BP reactivity and no differences in BP recovery from either type of challenges. Visceral fat was positively associated with BP reactivity to standing up only and in males only (+8.4 ± 3.6 mmHg per 1 log cm(3) of visceral fat, P = 0.008), and this association was independent of total body fat. No association was seen between visceral fat and BP recovery from either type of challenge in either sex. All these associations were independent of age, puberty stage, height and initial BP. CONCLUSIONS: Adolescent males vs. females demonstrate greater BP reactivity but similar BP recovery from physical and mental challenges. Excess visceral fat enhances BP reactivity to physical but not mental challenges in males only.


Subject(s)
Blood Pressure , Hypertension/physiopathology , Intra-Abdominal Fat/physiopathology , Adolescent , Body Fat Distribution , Female , Humans , Intra-Abdominal Fat/metabolism , Male , Quebec/epidemiology , Risk Factors , Sex Factors , Surveys and Questionnaires , Task Performance and Analysis
11.
Neuroimage ; 115: 191-201, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25956809

ABSTRACT

Testosterone is a sex hormone involved in brain maturation via multiple molecular mechanisms. Previous human studies described age-related changes in the overall volume and structural properties of white matter during male puberty. Based on this work, we have proposed that testosterone may induce a radial growth of the axon and, possibly, modulate axonal transport. In order to determine whether this is the case we have used two different experimental approaches. With electron microscopy, we have evaluated sex differences in the structural properties of axons in the corpus callosum (splenium) of young rats, and tested consequences of castration carried out after weaning. Then we examined in vitro the effect of the non-aromatizable androgen Mibolerone on the structure and bidirectional transport of wheat-germ agglutinin vesicles in the axons of cultured sympathetic neurons. With electron microscopy, we found robust sex differences in axonal diameter (males>females) and g ratio (males>females). Removal of endogenous testosterone by castration was associated with lower axon diameter and lower g ratio in castrated (vs. intact) males. In vitro, Mibolerone influenced the axonal transport in a time- and dose-dependent manner, and increased the axon caliber as compared with vehicle-treated neurons. These findings are consistent with the role of testosterone in shaping the axon by regulating its radial growth, as predicted by the initial human studies.


Subject(s)
Androgens/pharmacology , Axonal Transport/drug effects , Axonal Transport/physiology , Axons/drug effects , Axons/ultrastructure , Animals , Corpus Callosum/drug effects , Corpus Callosum/ultrastructure , Dose-Response Relationship, Drug , Female , Immunohistochemistry , Male , Nandrolone/analogs & derivatives , Nandrolone/pharmacology , Orchiectomy , Ovariectomy , Primary Cell Culture , Rats , Rats, Wistar , Sex Characteristics , Testosterone/pharmacology , White Matter/anatomy & histology , White Matter/drug effects
12.
Psychol Med ; 45(11): 2285-94, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25817177

ABSTRACT

BACKGROUND: Resilience is the capacity of individuals to resist mental disorders despite exposure to stress. Little is known about its neural underpinnings. The putative variation of white-matter microstructure with resilience in adolescence, a critical period for brain maturation and onset of high-prevalence mental disorders, has not been assessed by diffusion tensor imaging (DTI). Lower fractional anisotropy (FA) though, has been reported in the corpus callosum (CC), the brain's largest white-matter structure, in psychiatric and stress-related conditions. We hypothesized that higher FA in the CC would characterize stress-resilient adolescents. METHOD: Three groups of adolescents recruited from the community were compared: resilient with low risk of mental disorder despite high exposure to lifetime stress (n = 55), at-risk of mental disorder exposed to the same level of stress (n = 68), and controls (n = 123). Personality was assessed by the NEO-Five Factor Inventory (NEO-FFI). Voxelwise statistics of DTI values in CC were obtained using tract-based spatial statistics. Regional projections were identified by probabilistic tractography. RESULTS: Higher FA values were detected in the anterior CC of resilient compared to both non-resilient and control adolescents. FA values varied according to resilience capacity. Seed regional changes in anterior CC projected onto anterior cingulate and frontal cortex. Neuroticism and three other NEO-FFI factor scores differentiated non-resilient participants from the other two groups. CONCLUSION: High FA was detected in resilient adolescents in an anterior CC region projecting to frontal areas subserving cognitive resources. Psychiatric risk was associated with personality characteristics. Resilience in adolescence may be related to white-matter microstructure.


Subject(s)
Corpus Callosum/ultrastructure , Diffusion Tensor Imaging , Resilience, Psychological , Stress, Psychological , White Matter/ultrastructure , Adolescent , Anisotropy , Female , Humans , Magnetic Resonance Imaging , Male , Personality Assessment
13.
Alcohol ; 49(2): 103-10, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25650137

ABSTRACT

Changes in reward processing have been identified as one important pathogenetic mechanism in alcohol addiction. The nonsynonymous single nucleotide polymorphism in the brain-derived neurotrophic factor (BDNF) gene (rs6265/Val66Met) modulates the central nervous system activity of neurotransmitters involved in reward processing such as serotonin, dopamine, and glutamate. It was identified as crucial for alcohol consumption in healthy adults and, in rats, specifically related to the function in the striatum, a region that is commonly involved in reward processing. However, studies in humans on the association of BDNF Val66Met and reward-related brain functions and its role for alcohol consumption, a significant predictor of later alcohol addiction, are missing. Based on an intermediate phenotype approach, we assessed the early orientation toward alcohol and alcohol consumption in 530 healthy adolescents that underwent a monetary incentive delay task during functional magnetic resonance imaging. We found a significantly lower response in the putamen to reward anticipation in adolescent Met carriers with high versus low levels of alcohol consumption. During reward feedback, Met carriers with low putamen reactivity were significantly more likely to orient toward alcohol and to drink alcohol 2 years later. This study indicates a possible effect of BDNF Val66Met on alcohol addiction-related phenotypes in adolescence.


Subject(s)
Adolescent Behavior/physiology , Alcohol Drinking/genetics , Brain-Derived Neurotrophic Factor/genetics , Brain/physiology , Reward , Adolescent , Adolescent Behavior/psychology , Alcohol Drinking/psychology , Female , Follow-Up Studies , Humans , Male , Methionine/genetics , Valine/genetics
14.
Dev Cogn Neurosci ; 11: 129-44, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25454417

ABSTRACT

This paper provides an overview of the Saguenay Youth Study (SYS) and its parental arm. The overarching goal of this effort is to develop trans-generational models of developmental cascades contributing to the emergence of common chronic disorders, such as depression, addictions, dementia and cardio-metabolic diseases. Over the past 10 years, we have acquired detailed brain and cardio-metabolic phenotypes, and genome-wide genotypes, in 1029 adolescents recruited in a population with a known genetic founder effect. At present, we are extending this dataset to acquire comparable phenotypes and genotypes in the biological parents of these individuals. After providing conceptual background for this work (transactions across time, systems and organs), we describe briefly the tools employed in the adolescent arm of this cohort and highlight some of the initial accomplishments. We then outline in detail the phenotyping protocol used to acquire comparable data in the parents.


Subject(s)
Basal Metabolism/genetics , Brain/physiopathology , Cardiovascular Diseases/genetics , Founder Effect , Life Change Events , Mental Disorders/genetics , Prenatal Exposure Delayed Effects/genetics , Adolescent , Adult , Body Composition/genetics , Canada , Child , Chronic Disease , Cognition , Cost of Illness , Dementia/genetics , Depressive Disorder/genetics , Disabled Persons , Female , Genotype , Humans , Longevity , Magnetic Resonance Imaging , Male , Middle Aged , Parents , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Substance-Related Disorders/genetics
15.
Mol Psychiatry ; 20(2): 263-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24514566

ABSTRACT

Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54,837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10(-)(7)), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits.


Subject(s)
Brain/anatomy & histology , Cognition/physiology , Intelligence/physiology , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Animals , Cells, Cultured , Female , Genetic Association Studies , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Meta-Analysis as Topic , Mice , Mice, Transgenic , Microarray Analysis , Neural Stem Cells/physiology , Neuropsychological Tests
16.
Mol Psychiatry ; 20(8): 1011-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25224261

ABSTRACT

Human brain anatomy is strikingly diverse and highly inheritable: genetic factors may explain up to 80% of its variability. Prior studies have tried to detect genetic variants with a large effect on neuroanatomical diversity, but those currently identified account for <5% of the variance. Here, based on our analyses of neuroimaging and whole-genome genotyping data from 1765 subjects, we show that up to 54% of this heritability is captured by large numbers of single-nucleotide polymorphisms of small-effect spread throughout the genome, especially within genes and close regulatory regions. The genetic bases of neuroanatomical diversity appear to be relatively independent of those of body size (height), but shared with those of verbal intelligence scores. The study of this genomic architecture should help us better understand brain evolution and disease.


Subject(s)
Brain/anatomy & histology , Genome , Phenotype , Adolescent , Cohort Studies , Computer Simulation , Female , Genome-Wide Association Study , Genotyping Techniques , Humans , Magnetic Resonance Imaging , Male , Models, Genetic , Organ Size , Polymorphism, Single Nucleotide
17.
Neuroscience ; 276: 117-25, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-24508743

ABSTRACT

There are two ways to picture white matter: as a grid of electrical wires or a network of roads. The first metaphor captures the classical function of an axon as conductor of action potentials (and information) from one brain region to another. The second one points to the important role of axons in a bi-directional transport of biological molecules and organelles between the cell body and synapse. Given the wide variety of such cargoes, a well-functioning axonal transport is critical for a number of processes, including neurotransmission, metabolism and viability of neurons. This selective review will emphasize the need for considering axonal transport when interpreting functional consequences of inter-individual variations in the structural properties of white matter. We start by describing the space occupied by white matter and techniques used in vivo for its characterization. We then provide examples of key features of maturation and aging of white matter, as well as some of the common abnormalities observed in neurodevelopmental and neurodegenerative disorders. Next, we review work that motivated our focus on axonal diameter, and explain the relationships between transport and cytoskeleton within the axon. We will conclude by describing molecular machinery of axonal transport and genes that may contribute to inter-individual variations in axonal diameter and axonal transport.


Subject(s)
Axonal Transport/physiology , Axons/physiology , Brain/cytology , Brain/growth & development , White Matter/cytology , White Matter/growth & development , Animals , Axonal Transport/genetics , Axons/ultrastructure , Cytoskeleton/genetics , Cytoskeleton/physiology , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Male
18.
Mol Psychiatry ; 19(1): 63-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23337944

ABSTRACT

Dietary preference for fat may increase risk for obesity. It is a complex behavior regulated in part by the amygdala, a brain structure involved in reward processing and food behavior, and modulated by genetic factors. Here, we conducted a genome-wide association study (GWAS) to search for gene loci associated with dietary intake of fat, and we tested whether these loci are also associated with adiposity and amygdala volume. We studied 598 adolescents (12-18 years) recruited from the French-Canadian founder population and genotyped them with 530 011 single-nucleotide polymorphisms. Fat intake was assessed with a 24-hour food recall. Adiposity was examined with anthropometry and bioimpedance. Amygdala volume was measured by magnetic resonance imaging. GWAS identified a locus of fat intake in the µ-opioid receptor gene (OPRM1, rs2281617, P=5.2 × 10(-6)), which encodes a receptor expressed in the brain-reward system and shown previously to modulate fat preference in animals. The minor OPRM1 allele appeared to have a 'protective' effect: it was associated with lower fat intake (by 4%) and lower body-fat mass (by ∼2 kg, P=0.02). Consistent with the possible amygdala-mediated inhibition of fat preference, this allele was additionally associated with higher amygdala volume (by 69 mm(3), P=0.02) and, in the carriers of this allele, amygdala volume correlated inversely with fat intake (P=0.02). Finally, OPRM1 was associated with fat intake in an independent sample of 490 young adults. In summary, OPRM1 may modulate dietary intake of fat and hence risk for obesity, and this effect may be modulated by subtle variations in the amygdala volume.


Subject(s)
Dietary Fats/adverse effects , Genetic Predisposition to Disease , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Opioid, mu/genetics , Adiposity/genetics , Adolescent , Adult , Amygdala/metabolism , Amygdala/pathology , Body Mass Index , Canada , Child , Cross-Sectional Studies , Energy Intake/genetics , Female , Genome-Wide Association Study , Genotype , Humans , Male , Obesity/pathology , Young Adult
19.
Mol Psychiatry ; 19(4): 462-70, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23628983

ABSTRACT

Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have early WM microstructural alterations and whether those alterations would be associated with differences in gray-matter (GM) volumes. Forty-two adolescents with three core manic symptoms and no psychiatric diagnosis, and 126 adolescents matched by age and sex, with no psychiatric diagnosis or symptoms, were identified after screening the IMAGEN database of 2223 young adolescents recruited from the general population. After image quality control, voxel-wise statistics were performed on the diffusion parameters using tract-based spatial statistics in 25 SBP adolescents and 77 controls, and on GM and WM images using voxel-based morphometry in 30 SBP adolescents and 106 controls. As compared with healthy controls, adolescents with SBP displayed lower FA values in a number of WM tracts, particularly in the corpus callosum, cingulum, bilateral superior and inferior longitudinal fasciculi, uncinate fasciculi and corticospinal tracts. Radial diffusivity was mainly higher in posterior parts of bilateral superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi and right cingulum. As compared with controls, SBP adolescents had lower GM volume in the left anterior cingulate region. This is the first study to investigate WM microstructure and GM morphometric variations in adolescents with SBP. The widespread FA alterations in association and projection tracts, associated with GM changes in regions involved in mood disorders, suggest altered structural connectivity in those adolescents.


Subject(s)
Bipolar Disorder/pathology , Brain/pathology , Nerve Fibers, Myelinated/pathology , Adolescent , Anisotropy , Chi-Square Distribution , Databases, Factual/statistics & numerical data , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Psychiatric Status Rating Scales , Self Report
20.
Int J Obes (Lond) ; 37(10): 1336-43, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23797144

ABSTRACT

BACKGROUND: Obesity, a major risk factor for cardiometabolic disease, is associated with lower cognitive performance from childhood to senescence, especially on tasks of executive function. In the cardiovascular domain, fat stored viscerally rather than elsewhere in the body carries particularly high risk. It is unknown whether this is also true in case of obesity-cognition relationships. The aim of this study was to assess the cross-sectional relationship between visceral fat (VF) and cognitive performance in a community sample of healthy adolescents. METHODS: In a community-based sample of 983 adolescents (12-18 years old, 480 males), VF was quantified using magnetic resonance imaging, total body fat was measured using a multifrequency bioimpedance, and cognitive performance was assessed using a battery of cognitive tests measuring executive function and memory. RESULTS: We found that larger volumes of VF were associated with lower performance on six measures of executive function (P=0.0001-0.02). We also found that the association of VF with executive function was moderated by sex for a subset of measures, such that relationship was present mainly in female subjects and not in male subjects (sex-by-VF interaction: P=0.001-0.04). These relationships were independent of the quantity of total body fat and a number of potential confounders, including age, puberty stage and household income. CONCLUSIONS: Our results suggest that the adverse association between obesity and executive function may be attributed to fat stored viscerally and not to fat stored elsewhere in the body. They also suggest that female subjects compared with male subjects may be more sensitive to the potentially detrimental effects of VF on cognition.


Subject(s)
Cognition Disorders/etiology , Executive Function , Intra-Abdominal Fat/pathology , Obesity/complications , Adolescent , Body Fat Distribution , Canada/epidemiology , Cognition Disorders/epidemiology , Cognition Disorders/physiopathology , Cross-Sectional Studies , Female , Humans , Male , Neuropsychological Tests , Obesity/epidemiology , Obesity/physiopathology , Parents , Puberty , Risk Factors , Sex Factors , Socioeconomic Factors , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...