Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Genet Sel Evol ; 56(1): 54, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009986

ABSTRACT

BACKGROUND: Mastitis is a disease that incurs significant costs in the dairy industry. A promising approach to mitigate its negative effects is to genetically improve the resistance of dairy cattle to mastitis. A meta-analysis of genome-wide association studies (GWAS) across multiple breeds for clinical mastitis (CM) and its indicator trait, somatic cell score (SCS), is a powerful method to identify functional genetic variants that impact mastitis resistance. RESULTS: We conducted meta-analyses of eight and fourteen GWAS on CM and SCS, respectively, using 30,689 and 119,438 animals from six dairy cattle breeds. Methods for the meta-analyses were selected to properly account for the multi-breed structure of the GWAS data. Our study revealed 58 lead markers that were associated with mastitis incidence, including 16 loci that did not overlap with previously identified quantitative trait loci (QTL), as curated at the Animal QTLdb. Post-GWAS analysis techniques such as gene-based analysis and genomic feature enrichment analysis enabled prioritization of 31 candidate genes and 14 credible candidate causal variants that affect mastitis. CONCLUSIONS: Our list of candidate genes can help to elucidate the genetic architecture underlying mastitis resistance and provide better tools for the prevention or treatment of mastitis, ultimately contributing to more sustainable animal production.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Mastitis, Bovine , Quantitative Trait Loci , Animals , Cattle/genetics , Mastitis, Bovine/genetics , Female , Genome-Wide Association Study/methods , Genome-Wide Association Study/veterinary , Disease Resistance/genetics , Polymorphism, Single Nucleotide , Breeding/methods
2.
Commun Biol ; 7(1): 270, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443549

ABSTRACT

Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.


Subject(s)
Deer , Diapause , Animals , Blastocyst , Cell Differentiation , Cell Polarity , Diapause/genetics
3.
Genome Res ; 34(2): 300-309, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38355307

ABSTRACT

Expression and splicing quantitative trait loci (e/sQTL) are large contributors to phenotypic variability. Achieving sufficient statistical power for e/sQTL mapping requires large cohorts with both genotypes and molecular phenotypes, and so, the genomic variation is often called from short-read alignments, which are unable to comprehensively resolve structural variation. Here we build a pangenome from 16 HiFi haplotype-resolved cattle assemblies to identify small and structural variation and genotype them with PanGenie in 307 short-read samples. We find high (>90%) concordance of PanGenie-genotyped and DeepVariant-called small variation and confidently genotype close to 21 million small and 43,000 structural variants in the larger population. We validate 85% of these structural variants (with MAF > 0.1) directly with a subset of 25 short-read samples that also have medium coverage HiFi reads. We then conduct e/sQTL mapping with this comprehensive variant set in a subset of 117 cattle that have testis transcriptome data, and find 92 structural variants as causal candidates for eQTL and 73 for sQTL. We find that roughly half of the top associated structural variants affecting expression or splicing are transposable elements, such as SV-eQTL for STN1 and MYH7 and SV-sQTL for CEP89 and ASAH2 Extensive linkage disequilibrium between small and structural variation results in only 28 additional eQTL and 17 sQTL discovered when including SVs, although many top associated SVs are compelling candidates.


Subject(s)
Quantitative Trait Loci , RNA Splicing , Male , Cattle/genetics , Animals , Genotype , Phenotype , Linkage Disequilibrium , Genomic Structural Variation
5.
Nat Commun ; 15(1): 674, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253538

ABSTRACT

Breeding bulls are well suited to investigate inherited variation in male fertility because they are genotyped and their reproductive success is monitored through semen analyses and thousands of artificial inseminations. However, functional data from relevant tissues are lacking in cattle, which prevents fine-mapping fertility-associated genomic regions. Here, we characterize gene expression and splicing variation in testis, epididymis, and vas deferens transcriptomes of 118 mature bulls and conduct association tests between 414,667 molecular phenotypes and 21,501,032 genome-wide variants to identify 41,156 regulatory loci. We show broad consensus in tissue-specific and tissue-enriched gene expression between the three bovine tissues and their human and murine counterparts. Expression- and splicing-mediating variants are more than three times as frequent in testis than epididymis and vas deferens, highlighting the transcriptional complexity of testis. Finally, we identify genes (WDR19, SPATA16, KCTD19, ZDHHC1) and molecular phenotypes that are associated with quantitative variation in male fertility through transcriptome-wide association and colocalization analyses.


Subject(s)
Epididymis , Quantitative Trait Loci , Humans , Cattle , Animals , Male , Mice , Quantitative Trait Loci/genetics , Testis , Consensus , Fertility/genetics
7.
Nucleic Acids Res ; 51(22): 12069-12075, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37953306

ABSTRACT

The branch point sequence is a degenerate intronic heptamer required for the assembly of the spliceosome during pre-mRNA splicing. Disruption of this motif may promote alternative splicing and eventually cause phenotype variation. Despite its functional relevance, the branch point sequence is not included in most genome annotations. Here, we predict branch point sequences in 30 plant and animal species and attempt to quantify their evolutionary constraints using public variant databases. We find an implausible variant distribution in the databases from 16 of 30 examined species. Comparative analysis of variants from whole-genome sequencing shows that variants submitted from exome sequencing or false positive variants are widespread in public databases and cause these irregularities. We then investigate evolutionary constraint with largely unbiased public variant databases in 14 species and find that the fourth and sixth position of the branch point sequence are more constrained than coding nucleotides. Our findings show that public variant databases should be scrutinized for possible biases before they qualify to analyze evolutionary constraint.


Subject(s)
Biological Evolution , Plants , RNA Splicing , Animals , Genomics , Introns/genetics , Plants/genetics , Spliceosomes , Databases, Genetic
8.
Genet Sel Evol ; 55(1): 70, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828440

ABSTRACT

BACKGROUND: Combining the results of within-population genome-wide association studies (GWAS) based on whole-genome sequences into a single meta-analysis (MA) is an accurate and powerful method for identifying variants associated with complex traits. As part of the H2020 BovReg project, we performed sequence-level MA for beef production traits. Five partners from France, Switzerland, Germany, and Canada contributed summary statistics from sequence-based GWAS conducted with 54,782 animals from 15 purebred or crossbred populations. We combined the summary statistics for four growth, nine morphology, and 15 carcass traits into 16 MA, using both fixed effects and z-score methods. RESULTS: The fixed-effects method was generally more informative to provide indication on potentially causal variants, although we combined substantially different traits in each MA. In comparison with within-population GWAS, this approach highlighted (i) a larger number of quantitative trait loci (QTL), (ii) QTL more frequently located in genomic regions known for their effects on growth and meat/carcass traits, (iii) a smaller number of genomic variants within the QTL, and (iv) candidate variants that were more frequently located in genes. MA pinpointed variants in genes, including MSTN, LCORL, and PLAG1 that have been previously associated with morphology and carcass traits. We also identified dozens of other variants located in genes associated with growth and carcass traits, or with a function that may be related to meat production (e.g., HS6ST1, HERC2, WDR75, COL3A1, SLIT2, MED28, and ANKAR). Some of these variants overlapped with expression or splicing QTL reported in the cattle Genotype-Tissue Expression atlas (CattleGTEx) and could therefore regulate gene expression. CONCLUSIONS: By identifying candidate genes and potential causal variants associated with beef production traits in cattle, MA demonstrates great potential for investigating the biological mechanisms underlying these traits. As a complement to within-population GWAS, this approach can provide deeper insights into the genetic architecture of complex traits in beef cattle.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Cattle/genetics , Animals , Phenotype , Meat/analysis , Genomics , Polymorphism, Single Nucleotide
9.
Proc Natl Acad Sci U S A ; 120(42): e2305712120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812723

ABSTRACT

Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.


Subject(s)
Adenylate Kinase , Infertility , Semen , Animals , Cattle , Female , Male , Mice , Pregnancy , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Fertility , Mammals , Semen/metabolism , Semen Analysis , Sperm Motility , Spermatozoa/metabolism
10.
Genetics ; 225(3)2023 11 01.
Article in English | MEDLINE | ID: mdl-37655920

ABSTRACT

Structural variants (SVs) and short tandem repeats (STRs) are significant sources of genetic variation. However, the impacts of these variants on gene regulation have not been investigated in cattle. Here, we genotyped and characterized 19,408 SVs and 374,821 STRs in 183 bovine genomes and investigated their impact on molecular phenotypes derived from testis transcriptomes. We found that 71% STRs were multiallelic. The vast majority (95%) of STRs and SVs were in intergenic and intronic regions. Only 37% SVs and 40% STRs were in high linkage disequilibrium (LD) (R2 > 0.8) with surrounding SNPs/insertions and deletions (Indels), indicating that SNP-based association testing and genomic prediction are blind to a nonnegligible portion of genetic variation. We showed that both SVs and STRs were more than 2-fold enriched among expression and splicing QTL (e/sQTL) relative to SNPs/Indels and were often associated with differential expression and splicing of multiple genes. Deletions and duplications had larger impacts on splicing and expression than any other type of SV. Exonic duplications predominantly increased gene expression either through alternative splicing or other mechanisms, whereas expression- and splicing-associated STRs primarily resided in intronic regions and exhibited bimodal effects on the molecular phenotypes investigated. Most e/sQTL resided within 100 kb of the affected genes or splicing junctions. We pinpoint candidate causal STRs and SVs associated with the expression of SLC13A4 and TTC7B and alternative splicing of a lncRNA and CAPP1. We provide a catalog of STRs and SVs for taurine cattle and show that these variants contribute substantially to gene expression and splicing variation.


Subject(s)
Polymorphism, Single Nucleotide , Testis , Male , Cattle/genetics , Animals , Genome , Microsatellite Repeats , Gene Expression
11.
Genome Biol ; 24(1): 211, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723525

ABSTRACT

BACKGROUND: Structural variations (SVs) in individual genomes are major determinants of complex traits, including adaptability to environmental variables. The Mongolian and Hainan cattle breeds in East Asia are of taurine and indicine origins that have evolved to adapt to cold and hot environments, respectively. However, few studies have investigated SVs in East Asian cattle genomes and their roles in environmental adaptation, and little is known about adaptively introgressed SVs in East Asian cattle. RESULTS: In this study, we examine the roles of SVs in the climate adaptation of these two cattle lineages by generating highly contiguous chromosome-scale genome assemblies. Comparison of the two assemblies along with 18 Mongolian and Hainan cattle genomes obtained by long-read sequencing data provides a catalog of 123,898 nonredundant SVs. Several SVs detected from long reads are in exons of genes associated with epidermal differentiation, skin barrier, and bovine tuberculosis resistance. Functional investigations show that a 108-bp exonic insertion in SPN may affect the uptake of Mycobacterium tuberculosis by macrophages, which might contribute to the low susceptibility of Hainan cattle to bovine tuberculosis. Genotyping of 373 whole genomes from 39 breeds identifies 2610 SVs that are differentiated along a "north-south" gradient in China and overlap with 862 related genes that are enriched in pathways related to environmental adaptation. We identify 1457 Chinese indicine-stratified SVs that possibly originate from banteng and are frequent in Chinese indicine cattle. CONCLUSIONS: Our findings highlight the unique contribution of SVs in East Asian cattle to environmental adaptation and disease resistance.


Subject(s)
Adaptation, Physiological , Disease Susceptibility , Animals , Cattle , Asia, Eastern , China , Tuberculosis, Bovine/genetics , Adaptation, Physiological/genetics
12.
Animal ; 17 Suppl 1: 100742, 2023 May.
Article in English | MEDLINE | ID: mdl-37567657

ABSTRACT

Cattle are a well-suited "model organism" to study the genetic underpinnings of variation in male reproductive performance. The adoption of artificial insemination and genomic prediction in many cattle breeds provide access to microarray-derived genotypes and repeated measurements for semen quality and insemination success in several thousand bulls. Similar-sized mapping cohorts with phenotypes for male fertility are not available for most other species precluding powerful association testing. The repeated measurements of the artificial insemination bulls' semen quality enable the differentiation between transient and biologically relevant trait fluctuations, and thus, are an ideal source of phenotypes for variance components estimation and genome-wide association testing. Genome-wide case-control association testing involving bulls with either aberrant sperm quality or low insemination success revealed several causal recessive loss-of-function alleles underpinning monogenic reproductive disorders. These variants are routinely monitored with customised genotyping arrays in the male selection candidates to avoid the use of subfertile or infertile bulls for artificial insemination and natural service. Genome-wide association studies with quantitative measurements of semen quality and insemination success revealed quantitative trait loci for male fertility, but the underlying causal variants remain largely unknown. Moreover, these loci explain only a small part of the heritability of male fertility. Integrating genome-wide association studies with gene expression and other omics data from male reproductive tissues is required for the fine-mapping of candidate causal variants underlying variation in male reproductive performance in cattle.

13.
Genome Biol ; 24(1): 139, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337218

ABSTRACT

The Bovine Pangenome Consortium (BPC) is an international collaboration dedicated to the assembly of cattle genomes to develop a more complete representation of cattle genomic diversity. The goal of the BPC is to provide genome assemblies and a community-agreed pangenome representation to replace breed-specific reference assemblies for cattle genomics. The BPC invites partners sharing our vision to participate in the production of these assemblies and the development of a common, community-approved, pangenome reference as a public resource for the research community ( https://bovinepangenome.github.io/ ). This community-driven resource will provide the context for comparison between studies and the future foundation for cattle genomic selection.


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Cattle/genetics , Animals , Genome
14.
Genome Biol ; 24(1): 124, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217946

ABSTRACT

BACKGROUND: Several models and algorithms have been proposed to build pangenomes from multiple input assemblies, but their impact on variant representation, and consequently downstream analyses, is largely unknown. RESULTS: We create multi-species super-pangenomes using pggb, cactus, and minigraph with the Bos taurus taurus reference sequence and eleven haplotype-resolved assemblies from taurine and indicine cattle, bison, yak, and gaur. We recover 221 k nonredundant structural variations (SVs) from the pangenomes, of which 135 k (61%) are common to all three. SVs derived from assembly-based calling show high agreement with the consensus calls from the pangenomes (96%), but validate only a small proportion of variations private to each graph. Pggb and cactus, which also incorporate base-level variation, have approximately 95% exact matches with assembly-derived small variant calls, which significantly improves the edit rate when realigning assemblies compared to minigraph. We use the three pangenomes to investigate 9566 variable number tandem repeats (VNTRs), finding 63% have identical predicted repeat counts in the three graphs, while minigraph can over or underestimate the count given its approximate coordinate system. We examine a highly variable VNTR locus and show that repeat unit copy number impacts the expression of proximal genes and non-coding RNA. CONCLUSIONS: Our findings indicate good consensus between the three pangenome methods but also show their individual strengths and weaknesses that need to be considered when analysing different types of variants from multiple input assemblies.


Subject(s)
Cattle , Genome , Sequence Analysis, DNA , Animals , Cattle/genetics , Minisatellite Repeats , Sequence Analysis, DNA/methods
15.
Genet Sel Evol ; 55(1): 33, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170101

ABSTRACT

BACKGROUND: Low-pass sequencing followed by sequence variant genotype imputation is an alternative to the routine microarray-based genotyping in cattle. However, the impact of haplotype reference panels and their interplay with the coverage of low-pass whole-genome sequencing data have not been sufficiently explored in typical livestock settings where only a small number of reference samples is available. METHODS: Sequence variant genotyping accuracy was compared between two variant callers, GATK and DeepVariant, in 50 Brown Swiss cattle with sequencing coverages ranging from 4- to 63-fold. Haplotype reference panels of varying sizes and composition were built with DeepVariant based on 501 individuals from nine breeds. High-coverage sequence data for 24 Brown Swiss cattle were downsampled to between 0.01- and 4-fold to mimic low-pass sequencing. GLIMPSE was used to infer sequence variant genotypes from the low-pass sequencing data using different haplotype reference panels. The accuracy of the sequence variant genotypes that were inferred from low-pass sequencing data was compared with sequence variant genotypes called from high-coverage data. RESULTS: DeepVariant was used to establish bovine haplotype reference panels because it outperformed GATK in all evaluations. Within-breed haplotype reference panels were more accurate and efficient to impute sequence variant genotypes from low-pass sequencing than equally-sized multibreed haplotype reference panels for all target sample coverages and allele frequencies. F1 scores greater than 0.9, which indicate high harmonic means of recall and precision of called genotypes, were achieved with 0.25-fold sequencing coverage when large breed-specific haplotype reference panels (n = 150) were used. In absence of such large within-breed haplotype panels, variant genotyping accuracy from low-pass sequencing could be increased either by adding non-related samples to the haplotype reference panel or by increasing the coverage of the low-pass sequencing data. Sequence variant genotyping from low-pass sequencing was substantially less accurate when the reference panel lacked individuals from the target breed. CONCLUSIONS: Variant genotyping is more accurate with DeepVariant than GATK. DeepVariant is therefore suitable to establish bovine haplotype reference panels. Medium-sized breed-specific haplotype reference panels and large multibreed haplotype reference panels enable accurate imputation of low-pass sequencing data in a typical cattle breed.


Subject(s)
Haplotypes , Animals , Cattle , Genotype , Genetic Variation
16.
Commun Biol ; 5(1): 1320, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513809

ABSTRACT

Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.


Subject(s)
Genome-Wide Association Study , Genome , Horses/genetics , Animals , Phenotype , Genomics , Sequence Analysis, DNA
18.
Mol Biol Evol ; 39(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36382357

ABSTRACT

Understanding the genetic mechanism of how animals adapt to extreme conditions is fundamental to determine the relationship between molecular evolution and changing environments. Goat is one of the first domesticated species and has evolved rapidly to adapt to diverse environments, including harsh high-altitude conditions with low temperature and poor oxygen supply but strong ultraviolet radiation. Here, we analyzed 331 genomes of domestic goats and wild caprid species living at varying altitudes (high > 3000 m above sea level and low < 1200 m), along with a reference-guided chromosome-scale assembly (contig-N50: 90.4 Mb) of a female Tibetan goat genome based on PacBio HiFi long reads, to dissect the genetic determinants underlying their adaptation to harsh conditions on the Qinghai-Tibetan Plateau (QTP). Population genomic analyses combined with genome-wide association studies (GWAS) revealed a genomic region harboring the 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) gene showing strong association with high-altitude adaptability (PGWAS = 3.62 × 10-25) in Tibetan goats. Transcriptomic data from 13 tissues revealed that PAPSS2 was implicated in hypoxia-related pathways in Tibetan goats. We further verified potential functional role of PAPSS2 in response to hypoxia in PAPSS2-deficient cells. Introgression analyses suggested that the PAPSS2 haplotype conferring the high-altitude adaptability in Tibetan goats originated from a recent hybridization between goats and a wild caprid species, the markhor (Capra falconeri). In conclusion, our results uncover a hitherto unknown contribution of PAPSS2 to high-altitude adaptability in Tibetan goats on QTP, following interspecific introgression and natural selection.


Subject(s)
Genome-Wide Association Study , Goats , Animals , Goats/genetics , Ultraviolet Rays , Genomics
19.
JDS Commun ; 3(2): 120-125, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36339738

ABSTRACT

Undisturbed reproduction is key for successful breeding of beef and dairy cattle. Improving reproductive ability can be difficult because of antagonistic relationships with other economically relevant traits. In cattle, thorough investigation of female fertility revealed unfavorable genetic correlations with various production phenotypes. However, the correlation between male reproductive ability and production traits remains poorly understood. Here, we investigated the genetic relationships among and between male fertility characteristics and economically relevant traits in a population of Brown Swiss cattle. We performed GWAS with imputed genotypes at nearly 12 million sequence variants for semen quality (sperm head and tail anomalies, motility, concentration, and volume), male fertility, and 57 production phenotypes. Allele substitution effects were then correlated on a trait-by-trait basis to estimate genetic correlations. Correlations between male reproductive characteristics and traits of economic value were small and ranged from -0.0681 to 0.0787. Among the semen quality parameters, sperm motility was negatively correlated with anomalies (head: r = -0.7083 ± 0.0002; tail: r = -0.7739 ± 0.0002) and volume (r = -0.1266 ± 0.0003), whereas volume was negatively correlated with concentration (r = -0.3503 ± 0.0002). Sire nonreturn rate was negatively correlated with sperm anomalies (head: r = -0.1640 ± 0.0002; tail: r = -0.1580 ± 0.0002) and positively correlated with motility (r = 0.1598 ± 0.0002). A meta-analysis of male reproductive traits identified 2 quantitative trait loci: a previously described region on chromosome 6 showed pleiotropic effects and a novel region on chromosome 11 was associated with sperm head anomalies. In conclusion, our results suggest that selection for economically important dairy and production phenotypes has little impact on semen quality and fertility of Brown Swiss bulls.

20.
Nat Commun ; 13(1): 3012, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641504

ABSTRACT

Advantages of pangenomes over linear reference assemblies for genome research have recently been established. However, potential effects of sequence platform and assembly approach, or of combining assemblies created by different approaches, on pangenome construction have not been investigated. Here we generate haplotype-resolved assemblies from the offspring of three bovine trios representing increasing levels of heterozygosity that each demonstrate a substantial improvement in contiguity, completeness, and accuracy over the current Bos taurus reference genome. Diploid coverage as low as 20x for HiFi or 60x for ONT is sufficient to produce two haplotype-resolved assemblies meeting standards set by the Vertebrate Genomes Project. Structural variant-based pangenomes created from the haplotype-resolved assemblies demonstrate significant consensus regardless of sequence platform, assembler algorithm, or coverage. Inspecting pangenome topologies identifies 90 thousand structural variants including 931 overlapping with coding sequences; this approach reveals variants affecting QRICH2, PRDM9, HSPA1A, TAS2R46, and GC that have potential to affect phenotype.


Subject(s)
Genome , High-Throughput Nucleotide Sequencing , Animals , Cattle , Diploidy , Genome/genetics , Haplotypes , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...