Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 73(10): 6877-84, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16177367

ABSTRACT

Currently, paratuberculosis vaccines are comprised of crude whole-cell preparations of Mycobacterium avium subsp. paratuberculosis. Although effective in reducing clinical disease and fecal shedding, these vaccines have severe disadvantages as well, including seroconversion of vaccinated animals and granulomatous lesions at the site of vaccination. DNA vaccines can offer an alternative approach that may be safer and elicit more protective responses. In an effort to identify protective M. avium subsp. paratuberculosis sequences, a genomic DNA expression library was generated and subdivided into pools of clones (approximately 1,500 clones/pool). The clone pools were evaluated to determine DNA vaccine efficacy by immunizing mice via gene gun delivery and challenging them with live, virulent M. avium subsp. paratuberculosis. Four clone pools resulted in a significant reduction in the amount of M. avium subsp. paratuberculosis recovered from mouse tissues compared to mice immunized with other clone pools and nonvaccinated, infected control mice. One of the protective clone pools was further partitioned into 10 clone arrays of 108 clones each, and four clone arrays provided significant protection from both spleen and mesenteric lymph node colonization by M. avium subsp. paratuberculosis. The nucleotide sequence of each clone present in the protective pools was determined, and coding region functions were predicted by computer analysis. Comparison of the protective clone array sequences implicated 26 antigens that may be responsible for protection in mice. This study is the first study to demonstrate protection against M. avium subsp. paratuberculosis infection with expression library immunization.


Subject(s)
Bacterial Vaccines , Mycobacterium avium subsp. paratuberculosis/genetics , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/prevention & control , Animals , Antigens, Bacterial/genetics , Bacterial Vaccines/genetics , Cloning, Molecular , DNA, Bacterial/genetics , Genomic Library , Mice , Mycobacterium avium/classification , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA , Vaccines, DNA/genetics
2.
Infect Immun ; 69(6): 4109-15, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11349083

ABSTRACT

Pasteurella multocida is the causative agent of a wide range of diseases in avian and mammalian hosts. Gene expression in response to low iron conditions was analyzed in P. multocida using whole-genome microarrays. The analysis shows that the expression of genes involved in energy metabolism and electron transport generally decreased 2.1- to 6-fold while that of genes used for iron binding and transport increased 2.1- to 7.7-fold in P. multocida during the first 2 h of growth under iron-limiting conditions compared with controls. Notably, 27% of the genes with significantly altered expression had no known function, illustrating the limitations of using publicly available databases to identify genes involved in microbial metabolism and pathogenesis. Taken together, the results of our investigations demonstrate the utility of whole-genome microarray analyses for the identification of genes with altered expression profiles during varying growth conditions and provide a framework for the detailed analysis of the molecular mechanisms of iron acquisition and metabolism in P. multocida and other gram-negative bacteria.


Subject(s)
Gene Expression Profiling , Iron/metabolism , Oligonucleotide Array Sequence Analysis/methods , Pasteurella multocida/growth & development , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Culture Media , Humans , Pasteurella multocida/genetics
3.
Proc Natl Acad Sci U S A ; 98(6): 3460-5, 2001 Mar 13.
Article in English | MEDLINE | ID: mdl-11248100

ABSTRACT

We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged approximately 270 million years ago and the gamma subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for approximately 1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.


Subject(s)
Genome, Bacterial , Pasteurella multocida/genetics , Base Sequence , DNA, Bacterial , Evolution, Molecular , Iron/metabolism , Molecular Sequence Data , Pasteurella multocida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...