Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Morphol ; 283(1): 51-65, 2022 01.
Article in English | MEDLINE | ID: mdl-34727377

ABSTRACT

Intrinsic cardiac neurons (ICNs) are crucial cells in the neural regulation of heart rhythm, myocardial contractility, and coronary blood flow. ICNs exhibit diversity in their morphology and neurotransmitters that probably are age-dependent. Therefore, neuroanatomical heart studies have been currently focused on the identification of chemical phenotypes of ICNs to disclose their possible functions in heart neural regulation. Employing whole-mount immunohistochemistry, we examined ICNs from atria of the newborn pigs (Sus scrofa domesticus) as ICNs at this stage of development have never been neurochemically characterized so far. We found that the majority of the examined ICNs (>60%) were of cholinergic phenotype. Biphenotypic neuronal somata (NS), that is, simultaneously positive for two neuronal markers, were also rather common and distributed evenly within the sampled ganglia. Simultaneous positivity for cholinergic and adrenergic neuromarkers was specific in 16.4%, for cholinergic and nitrergic-in 3.5% of the examined NS. Purely either adrenergic or nitrergic ICNs were observed at 13% and 3.1%, correspondingly. Purely adrenergic and nitrergic NS were the most frequent in the ventral left atrial subplexus. Similarly to neuronal phenotype, sizes of NS also varied depending on the atrial region providing insights into their functional implications. Axons, but not NS, positive for classic sensory neuronal markers (vesicular glutamate transporter 2 and calcitonin gene-related peptide) were identified within epicardiac nerves and ganglia. Moreover, a substantial number of ICNs could not be attributed to any phenotype as they were not immunoreactive for antisera used in this study. Numerous dendrites with putative peptidergic and adrenergic contacts on cholinergic NS contributed to neuropil of ganglia. Our observations demonstrate that intrinsic cardiac ganglionated plexus is not fully developed in the newborn pig despite of dense network of neuronal processes and numerous signs of neural contacts within ganglia.


Subject(s)
Neurons , Sus scrofa , Animals , Animals, Newborn , Heart Atria , Phenotype , Swine
2.
Biology (Basel) ; 10(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34943274

ABSTRACT

Viral infections induce extracellular vesicles (EVs) containing viral material and inflammatory factors. Exosomes can easily cross the blood-brain barrier during respiratory tract infection and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosome-like vesicles (ELVs) from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures-from Wistar rats. ELVs from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, particles were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluorescence and mitochondrial superoxide-by MitoSOX. ELVs from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with ELVs from airway cells untreated with poly (I:C). In addition, poly (I:C)-primed airway cells induced inflammatory cytokine expression in the brain. The data indicate that ELVs secreted by virus-primed airway cells might enter the brain, cause the activation of microglial cells and neuroinflammation.

3.
BMC Cardiovasc Disord ; 17(1): 292, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29233092

ABSTRACT

BACKGROUND: Ganglionated plexuses (GP) are terminal parts of cardiac autonomous nervous system (ANS). Radiofrequency ablation (RFA) for atrial fibrillation (AF) possibly affects GP. Changes in heart rate variability (HRV) after RFA can reflect ANS modulation. METHODS: Epicardial RFA of GP on the left atrium (LA) was performed under the general anesthesia in 15 mature Romanov sheep. HRV was used to assess the alterations in autonomic regulation of the heart. A 24 - hour ECG monitoring was performed before the ablation, 2 days after it and at each of the 12 following months. Ablation sites were evaluated histologically. RESULTS: There was an instant change in HRV parameters after the ablation. A standard deviation of all intervals between normal QRS (SDNN), a square root of the mean of the squared differences between successive normal QRS intervals (RMSSD) along with HRV triangular index (TI), low frequency (LF) power and high frequency (HF) power decreased, while LF/HF ratio increased. Both the SDNN, LF power and the HF power changes persisted throughout the 12 - month follow - up. Significant decrease in RMSSD persisted only for 3 months, HRV TI for 6 months and increase in LF/HF ratio for 7 months of the follow - up. Afterwards these three parameters were not different from the preprocedural values. CONCLUSIONS: Epicardial RFA of GP's on the ovine left atrium has lasting effect on the main HRV parameters (SDNN, HF power and LF power). The normalization of RMSSD, HRV TI and LF/HF suggests that HRV after epicardial RFA of GPs on the left atrium might restore over time.


Subject(s)
Atrial Function, Left , Autonomic Denervation/methods , Catheter Ablation , Ganglia, Autonomic/surgery , Heart Atria/innervation , Heart Rate , Animals , Electrocardiography, Ambulatory , Female , Ganglia, Autonomic/physiopathology , Male , Sheep, Domestic , Time Factors
4.
Med Sci Monit ; 23: 1173-1179, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-28265105

ABSTRACT

BACKGROUND In glaucoma, non-intraocular pressure (IOP)-related risk factors can result in increased levels of extracellular glutamate, which triggers a cascade of neurodegeneration characterized by the excessive activation of N-methyl-D-aspartate (NMDA). The purpose of our study was to evaluate the glioprotective effects of memantine as a prototypic uncompetitive NMDA blocker on retinal astrocytes in the optic nerve crush (ONC) mouse model for glaucoma. MATERIAL AND METHODS Optic nerve crush was performed on all of the right eyes (n=8), whereas left eyes served as contralateral healthy controls (n=8) in Balb/c/Sca mice. Four randomly assigned mice received 2-µl intravitreal injections of memantine (1 mg/ml) after ONC in the experimental eye. One week after the experiment, optic nerves were dissec-ted and stained with methylene blue. Retinae were detached from the sclera. The tissue was immunostained. Whole-mount retinae were investigated by fluorescent microscopy. Astrocyte counts for each image were performed manually. RESULTS Histological sections of crushed optic nerves showed consistently moderate tissue damage in experimental groups. The mean number of astrocytes per image in the ONC group was significantly lower than in the healthy control group (7.13±1.5 and 10.47±1.9, respectively). Loss of astrocytes in the memantine-treated group was significantly lower (8.83±2.2) than in the ONC group. Assessment of inter-observer reliability showed excellent agreement among observations in control, ONC, and memantine groups. CONCLUSIONS The ONC is an effective method for investigation of astrocytic changes in mouse retina. Intravitreally administered memantine shows a promising glioprotective effect on mouse retinal astrocytes by preserving astrocyte count after ONC.


Subject(s)
Astrocytes/pathology , Memantine/administration & dosage , Memantine/pharmacology , Nerve Crush , Neuroglia/pathology , Neuroprotection/drug effects , Optic Nerve/pathology , Retina/pathology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Intravitreal Injections , Mice, Inbred BALB C , Neuroglia/drug effects , Neuroglia/metabolism , Observer Variation , Retina/drug effects , Retina/metabolism
5.
Medicina (Kaunas) ; 39(6): 589-95, 2003.
Article in Lithuanian | MEDLINE | ID: mdl-12829884

ABSTRACT

The aims of present study were to verify the topography of the intracardiac nerve subplexuses (INS) by using electrophysiological methods, its relations with sinoatrial (SA) node function and to investigate possibility of selective surgical SA node denervation. Fifteen mongrel dogs of either sex weighing 8 to 15 kg were used for electrophysiological studies. Both cervical vagosympathetic trunks were isolated and crushed by tight ligatures. Nervus subplexuses destructions were performed by cryocoagulation in three zones located around the right superior vena cava: ventral, lateral and dorsal. The sinus rhythm, SA node function recovery time, AV node conductivity, AV node and atrial effective refractory period were measured. Five experiments in each of three zones were performed. Experimental data show that destruction of the epicardial nerves has different effect on electrophysiological parameters. After destruction of the anterior zone of the right atrium the sinus rhythm decreased on an average by 11.6%; SA node function recovery time prolonged by 7.2%; AV node conductivity decreased by 13.1%; AV node effective refractory period prolonged by 12.9% and atrial effective refractory period, by 10.9 %. Measurements of electrophysiological parameters after intravenous injection of atropine sulphate show that sinus rhythm decreased on an average by 23.4%; SA node function recovery time increased by 9.1%; the conductivity of AV node decreased by 10.2%; AV node effective refractory period prolonged by 15.4% and atrial effective refractory period, by 13.2%. After destruction of the intracardiac nerves of the lateral zone, the sinus rhythm decreased by 15.7%; SA node function recovery time increased by 16.3%; AV node conductivity decreased by 8.3%; AV node effective refractory period and atrial effective refractory period prolonged by 11.9% and 10.0%, respectively. After the atropine sulphate intravenous injection, the sinus rhythm decreased on an average by 7.1%, SA node function recovery time prolonged by 7.1%, AV conductivity decreased by 9.1%, AV node effective refractory period increased by 12.4%, and atrial effective refractory period prolonged by 12.5%. After destruction of the nerves in the dorsal zone the changes of electrophysiological parameters were opposite to those obtained after destruction of the nerve tracts in the anterior or lateral zones: the sinus rhythm increased on an average by 4.3%; SA node function recovery time shortened by 8.8%; AV conductivity increased by 9.7%; AV node and atrial effective refractory period decreased by 12.3% and 12.1%, respectively. After intravenous atropine sulphate infusion, sinus rhythm decreased on an average by 8.3%; SA node function recovery time prolonged by 9.6%; AV node conductivity decreased by 5%; AV node and atrial effective refractory period prolonged by 4.2% and 5.2%, respectively. The average changes of electrophysiological parameters before and after INS destruction shows that cryocoagulation of ventral and lateral zones eliminates the effects of sympathetic tone to SA and AV nodal activity. Cryocoagulation of dorsal zone eliminates the effects of nervus vagus to both nodal structures. These findings shows the possibility alter or correct SA node function by making selective surgical SA node denervation.


Subject(s)
Atrioventricular Node/innervation , Heart Conduction System/physiology , Sinoatrial Node/innervation , Sinoatrial Node/surgery , Animals , Arrhythmias, Cardiac/physiopathology , Atrioventricular Node/physiology , Autonomic Nervous System/physiology , Cryosurgery , Data Interpretation, Statistical , Denervation , Dogs , Electrocardiography , Electrophysiology , Female , Heart Rate , Male , Parasympathetic Nervous System/physiology , Pericardium/innervation , Sinoatrial Node/physiology , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...