Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37895872

ABSTRACT

Ascidians are marine invertebrates that synthesize sulfated glycosaminoglycans (GAGs) within their viscera. Ascidian GAGs are considered analogues of mammalian GAGs and possess great potential as bioactive compounds, presenting antitumoral and anticoagulant activity. Due to its worldwide occurrence and, therefore, being a suitable organism for large-scale mariculture in many marine environments, our main objectives are to study Microcosmus exasperatus GAGs regarding composition, structure, and biological activity. We also aim to develop efficient protocols for sulfated polysaccharides extraction and purification for large-scale production and clinical applications. GAGs derived from M. exasperatus viscera were extracted by proteolytic digestion, purified by ion-exchange liquid chromatography, and characterized by agarose gel electrophoresis and enzymatic treatments. Anticoagulant activity was evaluated by APTT assays. Antitumoral activity was assessed in an in vitro model of tumor cell culture using MTT, clonogenic, and wound healing assays, respectively. Our results show that M. exasperatus presents three distinct polysaccharides; among them, two were identified: a dermatan sulfate and a fucosylated dermatan sulfate. Antitumoral activity was confirmed for the total polysaccharides (TP). While short-term incubation does not affect tumor cell viability at low concentrations, long-term TP incubation decreases LLC tumor cell growth/proliferation at different concentrations. In addition, TP decreased tumor cell migration at different concentrations. In conclusion, we state that M. exasperatus presents great potential as an alternative GAG source, producing compounds with antitumoral properties at low concentrations that do not possess anticoagulant activity and do not enhance other aspects of malignancy, such as tumor cell migration. Our perspectives are to apply these molecules in future preclinical studies for cancer treatment as antitumoral agents to be combined with current treatments to potentiate therapeutic efficacy.

2.
Glycobiology ; 33(9): 715-731, 2023 10 29.
Article in English | MEDLINE | ID: mdl-37289485

ABSTRACT

Hypercoagulability, a major complication of metastatic cancers, has usually been treated with heparins from natural sources, or with their synthetic derivatives, which are under intense investigation in clinical oncology. However, the use of heparin has been challenging for patients with risk of severe bleeding. While the systemic administration of heparins, in preclinical models, has shown primarily attenuating effects on metastasis, their direct effect on established solid tumors has generated contradictory outcomes. We investigated the direct antitumoral properties of two sulfated fucans isolated from marine echinoderms, FucSulf1 and FucSulf2, which exhibit anticoagulant activity with mild hemorrhagic potential. Unlike heparin, sulfated fucans significantly inhibited tumor cell proliferation (by ~30-50%), and inhibited tumor migration and invasion in vitro. We found that FucSulf1 and FucSulf2 interacted with fibronectin as efficiently as heparin, leading to loss of prostate cancer and melanoma cell spreading. The sulfated fucans increased the endocytosis of ß1 integrin and neuropilin-1 chains, two cell receptors implicated in fibronectin-dependent adhesion. The treatment of cancer cells with both sulfated fucans, but not with heparin, also triggered intracellular focal adhesion kinase (FAK) degradation, with a consequent overall decrease in activated focal adhesion kinase levels. Finally, only sulfated fucans inhibited the growth of B16-F10 melanoma cells implanted in the dermis of syngeneic C57/BL6 mice. FucSulf1 and FucSulf2 arise from this study as candidates for the design of possible alternatives to long-term treatments of cancer patients with heparins, with the advantage of also controlling local growth and invasion of malignant cells.


Subject(s)
Integrin beta1 , Melanoma , Male , Animals , Humans , Mice , Focal Adhesion Protein-Tyrosine Kinases , Integrin beta1/metabolism , Fibronectins/metabolism , Neuropilin-1 , Heparin/pharmacology , Endocytosis
3.
BMC Cancer ; 23(1): 322, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024796

ABSTRACT

BACKGROUND: Essential elements have functions in tumor progression by promoting protumoral cellular processes, such as proliferation, and migration, among others. Obtaining an understanding of how these elements relate to tumor progression processes is of great importance for research. Elemental profile studies in distant tissues, which can be modulated by tumor cells to promote metastasis, have not been sufficiently investigated. The main goal of this study is to evaluate multielemental distribution during tumor progression, focusing on tumor tissue and distant tissues that may be affected. METHODS: Tumor progression in vivo was simulated by inoculating C57BL/6 mice with Lewis Lung Carcinoma (LLC) cells. Samples of the primary tumor and distant tissues were collected during 5 weeks of tumor progression for the control and experimental (tumor-bearing) groups. The biological samples were analyzed using the synchrotron radiation X-Ray fluorescence technique. Data on the concentration of P, S, K, Ca, Mn, Fe, Cu, and Zn in the samples were obtained and statistically analyzed to evaluate the distribution of the elements during tumor progression in the primary tumor as well as distant tissues. RESULTS: It was possible to observe significant changes in the concentrations' distribution of P, S, K, Ca, Mn, Fe, and Cu in distant tissues caused by the presence of tumor cells. It was also possible to detect a greater similarity between tumor tissue (which has the lung as tissue of origin) and a tissue of non-origin, such as the liver, which is an unprecedented result. Moreover, changes in the distributions of concentrations were detected and studied over time for the different tissues analyzed, such as primary tumor, liver and lung, in Control and Tumor groups. CONCLUSIONS: Among other results, this paper could explore the modulation of distant tissues caused by the presence of a primary tumor. This could be achieved by the evaluation of several elements of known biological importance allowing the study of different biological processes involved in cancer. The role of essential elements as modulators of the tumor microenvironment is a relevant aspect of tumor progression and this work is a contribution to the field of tumoral metallomics.


Subject(s)
Neoplastic Processes , Tumor Microenvironment , Animals , Mice , Mice, Inbred C57BL
4.
Mar Drugs ; 20(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36354999

ABSTRACT

Acute and chronic dermatological injuries need rapid tissue repair due to the susceptibility to infections. To effectively promote cutaneous wound recovery, it is essential to develop safe, low-cost, and affordable regenerative tools. Therefore, we aimed to identify the biological mechanisms involved in the wound healing properties of the glycosaminoglycan dermatan sulfate (DS), obtained from ascidian Styela plicata, a marine invertebrate, which in preliminary work from our group showed no toxicity and promoted a remarkable fibroblast proliferation and migration. In this study, 2,4-DS (50 µg/mL)-treated and control groups had the relative gene expression of 84 genes participating in the healing pathway evaluated. The results showed that 57% of the genes were overexpressed during treatment, 16% were underexpressed, and 9.52% were not detected. In silico analysis of metabolic interactions exhibited overexpression of genes related to: extracellular matrix organization, hemostasis, secretion of inflammatory mediators, and regulation of insulin-like growth factor transport and uptake. Furthermore, in C57BL/6 mice subjected to experimental wounds treated with 0.25% 2,4-DS, the histological parameters demonstrated a great capacity for vascular recovery. Additionally, this study confirmed that DS is a potent inducer of wound-healing cellular pathways and a promoter of neovascularization, being a natural ally in the tissue regeneration strategy.


Subject(s)
Dermatan Sulfate , Urochordata , Animals , Mice , Dermatan Sulfate/metabolism , Dermatan Sulfate/pharmacology , Mice, Inbred C57BL , Urochordata/metabolism , Wound Healing , Natural Resources
5.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208981

ABSTRACT

Phenolic compounds (PCs) present in foods are associated with a decreased risk of developing inflammatory diseases. The aim of this study was to extract and characterize PCs from craft beer powder and evaluate their potential benefits in an experimental model of inflammatory bowel disease (IBD). PCs were extracted and quantified from pure beer samples. BALB/c mice received either the beer phenolic extract (BPE) or beer powder fortified with phenolic extract (BPFPE) of PCs daily for 20 days by gavage. Colon samples were collected for histopathological and immunohistochemical analyses. Dextran sodium sulfate (DSS)-induced mice lost more weight, had reduced colon length, and developed more inflammatory changes compared with DSS-induced mice treated with either BPE or BPFPE. In addition, in DSS-induced mice, the densities of CD4- and CD11b-positive cells, apoptotic rates, and activation of NF-κB and p-ERK1/2 MAPK intracellular signaling pathways were higher in those treated with BPE and BPFPE than in those not treated. Pretreatment with the phenolic extract and BPFPE remarkably attenuated DSS-induced colitis. The protective effect of PCs supports further investigation and development of therapies for human IBD.


Subject(s)
Beer , Colitis , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/pathology , Male , Mice , Mice, Inbred BALB C , Powders , Sodium Dodecyl Sulfate/toxicity
6.
Methods Mol Biol ; 2303: 93-109, 2022.
Article in English | MEDLINE | ID: mdl-34626373

ABSTRACT

Sulfate polysaccharides with unique structures of the chondroitin/dermatan and heparin/heparan families of sulfated glycosaminoglycans have been described in several species of ascidians (Chordata-Tunicata). These unique sulfated glycans have been isolated from the ascidians and characterized by biochemical and spectroscopic methods. The ascidian glycans can be extracted by different tissues or cells by proteolytic digestion followed by cetylpyridinium chloride/ethanol precipitation. The total glycans are then fractionated by ion-exchange chromatography on DEAE-cellulose and/or Mono Q (HR 5/5) columns. Alternatively, precipitation with different ethanol concentrations can be employed. An initial analysis of the purified ascidian glycans is carried out by agarose gel electrophoresis on diaminopropane/acetate buffer, before or after digestion with specific glycosaminoglycan lyases or deaminative cleavage with nitrous acid. The disaccharides formed by exhaustive degradation of the glycans are purified by gel-filtration chromatography on a Superdex Peptide column and analyzed by HPLC on a strong ion-exchange Sax Spherisorb column. 1H- or 13C-nuclear magnetic resonance spectroscopy in one or two dimensions is used to confirm the structure of the intact glycans.


Subject(s)
Chordata , Urochordata , Animals , Chondroitin Sulfates , Dermatan Sulfate , Ethanol , Glycosaminoglycans , Polysaccharides , Sulfates
7.
Bioresour Technol ; 343: 126152, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34699961

ABSTRACT

This work assesses scale effects in designing a biorefinery from Sargassum muticum seaweed by applying a detailed process modeling methodology. Two process conversion units were simulated: one considering anaerobic digestion steps for producing biogas and generating electricity (base project), and the other with residual seaweed solids sold as fertilizer (alternative project). A comprehensive economic analysis was performed to estimate the minimum selling price of the process's main product (fucoidan extract). Results indicated that capital expenditures are up to 12.7% times higher in the base project. Minimum selling prices of the fucoidan extract product demonstrate the biorefinery's economies of scale for both projects. Seaweed's low methane potential reduces the economic attractiveness of electricity generation from biogas in the base project. Conversely, organic fertilizer price was more influential in the alternative project. Nonetheless, risk analyses show similar results for both scenarios, mainly due to fucoidan extract selling price and CAPEX estimates uncertainties.


Subject(s)
Sargassum , Seaweed , Biofuels , Fertilizers , Methane
8.
Sci Rep ; 11(1): 15833, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349175

ABSTRACT

Metastatic disease remains the leading cause of death in cancer and understanding the mechanisms involved in tumor progression continues to be challenging. This work investigates the role of manganese in tumor progression in an in vivo model of tumor growth. Our data revealed that manganese accumulates within primary tumors and secondary organs as manganese-rich niches. Consequences of such phenomenon were investigated, and we verified that short-term changes in manganese alter cell surface molecules syndecan-1 and ß1-integrin, enhance collective cell migration and invasive behavior. Long-term increased levels of manganese do not affect cell growth and viability but enhance cell migration. We also observed that manganese is secreted from tumor cells in extracellular vesicles, rather than in soluble form. Finally, we describe exogenous glycosaminoglycans that counteract manganese effects on tumor cell behavior. In conclusion, our analyses describe manganese as a central element in tumor progression by accumulating in Mn-rich niches in vivo, as well as in vitro, affecting migration and extracellular vesicle secretion in vitro. Manganese accumulation in specific regions of the organism may not be a common ground for all cancers, nevertheless, it represents a new aspect of tumor progression that deserves special attention.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Lewis Lung/pathology , Cell Movement , Manganese/metabolism , Animals , Apoptosis , Breast Neoplasms/metabolism , Carcinoma, Lewis Lung/metabolism , Cell Proliferation , Disease Progression , Female , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
J Mol Recognit ; 34(10): e2922, 2021 10.
Article in English | MEDLINE | ID: mdl-34132435

ABSTRACT

Using a rat model of peritonitis, we herein report the inflammatory effect induced by the lectin isolated from Vatairea guianensis (VGL) seeds in the context of interactions between VGL and both toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1). Peritoneal macrophages were stimulated with VGL for dose-dependent gene expression and release of TNF-α. In vivo results showed that VGL (1 mg/kg; intraperitoneal) induced peritonitis in female Wistar rats. Leukocyte migration, macrophage activation, and protein leakage were measured 3 and 6 hours after induction. In vitro, peritoneal macrophages were stimulated with VGL for gene expression and TNF-α dosage (mean ± SEM (n = 6), analysis of variance, and Bonferroni's test (P < .05)). In silico, VGL structure was applied in molecular docking with representative glycans. It was found that (a) VGL increases vascular permeability and stimulates leukocyte migration, both rolling and adhesion; (b) lectin-induced neutrophil migration occurs via macrophage stimulation, both in vitro and in vivo; (c) lectin interacts with TLR4 and TNFR1; and (d) stimulates TNF-α gene expression (RT-PCR) and release from peritoneal macrophages. Thus, upon lectin-glycan binding on the cell surface, our results suggest that VGL induces an acute inflammatory response, in turn activating the release of peritoneal macrophages via TNF-α and TLR and/or TNFR receptor pathways.


Subject(s)
Fabaceae/chemistry , Glycoconjugates/metabolism , Macrophages, Peritoneal/drug effects , Plant Lectins/pharmacology , Animals , Cell Movement/drug effects , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Glycoconjugates/chemistry , Leukocytes/drug effects , Macrophages, Peritoneal/metabolism , Peritonitis/chemically induced , Peritonitis/metabolism , Peritonitis/pathology , Plant Lectins/chemistry , Plant Lectins/metabolism , Rats, Wistar , Receptors, Tumor Necrosis Factor, Type I/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
10.
J Cell Biochem ; 122(5): 577-597, 2021 05.
Article in English | MEDLINE | ID: mdl-33417295

ABSTRACT

Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Hedgehog Proteins/metabolism , Female , Heparitin Sulfate , Humans , Nerve Tissue Proteins/metabolism , Patched-1 Receptor/metabolism , Prognosis , Transcriptional Elongation Factors/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli3/metabolism
11.
Front Cell Dev Biol ; 8: 559554, 2020.
Article in English | MEDLINE | ID: mdl-33102470

ABSTRACT

Heparan sulfate (HS) is a glycosaminoglycan found mainly in its protein-conjugated form at the cell surface and the extracellular matrix. Its high sulfation degree mediates functional interactions with positively charged amino acids in proteins. 2-O sulfation of iduronic acid and 3-O sulfation of glucosamine in HS are mediated by the sulfotransferases HS2ST and HS3ST, respectively, which are dysregulated in several cancers. Both sulfotransferases regulate breast cancer cell viability and invasion, but their role in cancer stem cells (CSCs) is unknown. Breast CSCs express characteristic markers such as CD44+/CD24-/low , CD133 and ALDH1 and are involved in tumor initiation, formation, and recurrence. We studied the influence of HS2ST1 and HS3ST2 overexpression on the CSC phenotype in breast cancer cell lines representative of the triple-negative (MDA-MB-231) and hormone-receptor positive subtype (MCF-7). The CD44+/CD24-/low phenotype was significantly reduced in MDA-MB-231 cells after overexpression of both enzymes, remaining unaltered in MCF-7 cells. ALDH1 activity was increased after HS2ST1 and HS3ST2 overexpression in MDA-MB-231 cells and reduced after HS2ST1 overexpression in MCF-7 cells. Colony and spheroid formation were increased after HS2ST1 and HS3ST2 overexpression in MCF-7 cells. Moreover, MDA-MB-231 cells overexpressing HS2ST1 formed more colonies and could not generate spheres. The phenotypic changes were associated with complex changes in the expression of the stemness-associated notch and Wnt-signaling pathways constituents, syndecans, heparanase and Sulf1. The results improve our understanding of breast CSC function and mark a subtype-specific impact of HS modifications on the CSC phenotype of triple-negative and hormone receptor positive breast cancer model cell lines.

12.
Cancer Sci ; 111(8): 2907-2922, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32573871

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2-O-sulfotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF-7 and MDA-MB-231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF-2) to HS2ST1-expressing cells compared with control cells. HS2ST1-overexpressing cells showed reduced MAPK signaling responses to FGF-2, and altered expression of epidermal growth factor receptor (EGFR), E-cadherin, Wnt-7a, and Tcf4. The increased viability of HS2ST1-depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1-dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E-cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.


Subject(s)
Breast Neoplasms/pathology , Sulfotransferases/metabolism , Antigens, CD/metabolism , Butadienes/pharmacology , Cadherins/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , ErbB Receptors/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Gene Knockdown Techniques , Humans , MAP Kinase Signaling System/drug effects , MCF-7 Cells , Neoplasm Invasiveness/pathology , Nitriles/pharmacology , RNA, Small Interfering/metabolism , Sulfotransferases/genetics
13.
Cancers (Basel) ; 12(6)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466418

ABSTRACT

Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation. We report in this work that the heparan sulfate isolated from the viscera of the ascidian Phallusia nigra drastically attenuates metastases of colon carcinoma cells in mice. Our in vitro and in vivo assessments demonstrate that the P. nigra glycan has very low anticoagulant and antithrombotic activities and a reduced hypotension potential, although it efficiently prevented metastasis. Therefore, it may be a promising candidate for the development of a novel anti-metastatic drug.

14.
FEBS J ; 286(15): 2950-2964, 2019 08.
Article in English | MEDLINE | ID: mdl-31379111

ABSTRACT

In this review, we explore the roles of divalent metal ions in structure and function within the extracellular matrix (ECM), specifically, their interaction with glycosaminoglycans (GAGs) during tumor progression. Metals and GAGs have been individually associated with physiological and pathological processes, however, their combined activities in regulating cell behavior and ECM remodeling have not been fully explored to date. During tumor progression, divalent metals and GAGs participate in central processes, such as cell migration and angiogenesis, either by modulating cell surface molecules, as well as soluble signaling factors. In addition, studies on metals and polysaccharides interactions have been of great value, as they provide structural information that can be correlated with function. Finally, we believe that understanding how metals are regulated in physiological and pathological conditions is paramount for the development of new treatment strategies, as well as diagnostic and exploratory tools.


Subject(s)
Cell Movement , Extracellular Matrix/metabolism , Metals/metabolism , Neoplasms/metabolism , Animals , Cations, Divalent/metabolism , Glycosaminoglycans/metabolism , Humans , Neoplasms/pathology
15.
Mar Drugs ; 17(6)2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31212795

ABSTRACT

Heparin or highly sulfated heparan sulfate (HS) has been described in different invertebrates. In ascidians (Chordata-Tunicata), these glycosaminoglycans occur in intracellular granules of oocyte accessory cells and circulating basophil-like cells, resembling mammalian mast cells and basophils, respectively. HS is also a component of the basement membrane of different ascidian organs. We have analyzed an HS isolated from the internal organs of the ascidian Phallusia nigra, using solution 1H/13C NMR spectroscopy, which allowed us to identify and quantify the monosaccharides found in this glycosaminoglycan. A variety of α-glucosamine units with distinct degrees of sulfation and N-acetylation were revealed. The hexuronic acid units occur both as α-iduronic acid and ß-glucuronic acid, with variable sulfation at the 2-position. A peculiar structural aspect of the tunicate HS is the high content of 2-sulfated ß-glucuronic acid, which accounts for one-third of the total hexuronic acid units. Another distinct aspect of this HS is the occurrence of high content of N-acetylated α-glucosamine units bearing a sulfate group at position 6. The unique ascidian HS is a potent inhibitor of the binding of human colon adenocarcinoma cells to immobilized P-selectin, being 11-fold more potent than mammalian heparin, but almost ineffective as an anticoagulant. Thus, the components of the HS structure required to inhibit coagulation and binding of tumor cells to P-selectin are distinct. Our results also suggest that the regulation of the pathway involved in the biosynthesis of glycosaminoglycans suffered variations during the evolution of chordates.


Subject(s)
Adenocarcinoma/metabolism , Anticoagulants/metabolism , Colonic Neoplasms/metabolism , Glucuronates/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , P-Selectin/metabolism , Urochordata/metabolism , Animals , Anticoagulants/chemistry , Cell Line, Tumor , Colon/metabolism , Glucuronic Acid/metabolism , Glycosaminoglycans/metabolism , Heparin/metabolism , Humans
16.
Mem Inst Oswaldo Cruz ; 114: e190088, 2019.
Article in English | MEDLINE | ID: mdl-31188952

ABSTRACT

BACKGROUND: Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Plasmodium falciparum-infected erythrocytes (Pf-iEs). OBJECTIVES: In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. METHODS: Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using Chinese hamster ovary (CHO) and human lymphatic endothelial cell (HLEC) cells expressing intercellular adhesion molecule-1 (ICAM1) and chondroitin sulfate A (CSA), respectively. FINDINGS: This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA and ICAM-1 on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. CONCLUSIONS: These findings support a potential use for mollusk HS as adjunct therapy for severe malaria.


Subject(s)
Heparitin Sulfate/pharmacology , Merozoites/drug effects , Mollusca/chemistry , Plasmodium falciparum/drug effects , Animals , Cell Adhesion/drug effects , Erythrocytes/drug effects , Protozoan Proteins/drug effects , Reproducibility of Results , Time Factors
17.
Methods Mol Biol ; 1952: 55-70, 2019.
Article in English | MEDLINE | ID: mdl-30825165

ABSTRACT

Marine invertebrates produce different kinds of sulfated polysaccharides. These glycans play essential roles in several biological processes and the study of these molecules is promising in a variety of fields. In the following sections, we describe the materials and methods used for the extraction, purification, and characterization of marine invertebrate-derived glycosaminoglycans.


Subject(s)
Glycosaminoglycans/chemistry , Sulfates/chemistry , Animals , Aquatic Organisms/chemistry , Chemical Precipitation , Chromatography, Ion Exchange/methods , Dissection/methods , Electrophoresis, Agar Gel/methods , Glycosaminoglycans/isolation & purification , Invertebrates/chemistry , Magnetic Resonance Spectroscopy/methods , Proteolysis , Sulfates/isolation & purification
18.
Int J Biol Macromol ; 124: 548-556, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30500509

ABSTRACT

The parotoid gland of bufonids is characterized as a specialized integument region, formed by different gland types. The secretion elaborated by the largest glandular alveoli has been related to animal chemical defense and is constituted by granular protein content, associated with a basophilic and alcianophilic material with features of glycoconjugates. This study aimed to identify and characterize the glycoconjugates in the secretion of the largest granular gland of the parotoid gland of Rinella icterica by histochemical and immunohistochemical techniques at light microscopy, biochemical methods, and nuclear magnetic resonance spectroscopy. Our results showed that the glycoconjugate content contains a mixture of chondroitin­6­sulfate (C6S) and chondroitin-non-sulfate (C0S). Thus, chondroitin sulfate probably plays an important role in gland physiology, probably protecting the protein content while inside the secretory portion.


Subject(s)
Acetylgalactosamine/chemistry , Bufonidae/metabolism , Chondroitin Sulfates/chemistry , Glucuronic Acid/chemistry , Glycoconjugates/chemistry , Parotid Gland/chemistry , Acetylgalactosamine/isolation & purification , Animals , Brazil , Bufonidae/anatomy & histology , Carbohydrate Sequence , Chondroitin Sulfates/isolation & purification , Glucuronic Acid/isolation & purification , Glycoconjugates/isolation & purification , Male , Parotid Gland/anatomy & histology , Parotid Gland/physiology
19.
Mem. Inst. Oswaldo Cruz ; 114: e190088, 2019. graf
Article in English | LILACS | ID: biblio-1012679

ABSTRACT

BACKGROUND Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Plasmodium falciparum-infected erythrocytes (Pf-iEs). OBJECTIVES In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. METHODS Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using Chinese hamster ovary (CHO) and human lymphatic endothelial cell (HLEC) cells expressing intercellular adhesion molecule-1 (ICAM1) and chondroitin sulfate A (CSA), respectively. FINDINGS This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA and ICAM-1 on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. CONCLUSIONS These findings support a potential use for mollusk HS as adjunct therapy for severe malaria.


Subject(s)
Plasmodium falciparum , Malaria, Falciparum , Receptors, Cytoadhesin , Heparitin Sulfate , Mollusca
20.
Glycobiology ; 28(6): 427-434, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29522135

ABSTRACT

Metastasis is responsible for the majority of cancer-associated deaths, though only a very small number of tumor cells are able to efficiently complete all the steps of that process. Tumor cell survival in the bloodstream is one of the limiting aspects of the metastatic cascade. The formation of tumor cell-platelet complexes that promote tumor cell survival is facilitated by the binding of P-selectin on activated platelets to sialyl Lewis-containing oligosaccharides on the surface of tumor cells. Inhibition of this interaction has been shown to attenuate metastasis. Heparin is a potent selectin inhibitor and is capable to block platelet-tumor cell complex formation, thereby attenuating metastasis. Similarly, other sulfated polysaccharides isolated from marine invertebrates attenuate metastasis by a P-selectin-mediated mechanism. In this work, we investigated the selectin-dependent antimetastatic activity of sea urchin sulfated polysaccharides with slight structural differences: a sulfated fucan from Strongylocentrotus franciscanus; a sulfated fucan from Strongylocentrotus droebachiensis; and a sulfated galactan from Echinometra lucunter. The results demonstrate that these fucans and the galactan have different antiselectin activities despite being very similar molecules. Therefore, they may be interesting tools for studies on the structure-function relationship or even for future treatments.


Subject(s)
Antineoplastic Agents/therapeutic use , Galactans/therapeutic use , Neoplasms, Experimental/drug therapy , Polysaccharides/therapeutic use , Selectins/metabolism , Animals , Antineoplastic Agents/pharmacology , Blood Platelets/drug effects , Cell Line, Tumor , Galactans/pharmacology , Humans , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplasms, Experimental/pathology , Polysaccharides/pharmacology , Protein Binding , Sea Urchins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...