Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Plants (Basel) ; 13(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611461

ABSTRACT

Olive quick decline syndrome (OQDS) is a devastating plant disease caused by the bacterium Xylella fastidiosa (Xf). Exploratory missions in the Salento area led to the identification of putatively Xf-resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in host tissues (by the fluorescent in situ hybridization technique-FISH) and the presence of secondary metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood. The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless of hosts' genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant increase in compounds like salicylic acid, known as a signal molecule which mediates host responses upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry together with structural and chemical defenses are among the mechanisms operating to control Xf infection and may represent a common resistance trait among different olive genotypes.

2.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664617

ABSTRACT

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Subject(s)
Endophytes , Genotype , Olea , Plant Diseases , Xylella , Olea/microbiology , Xylella/physiology , Xylella/genetics , Endophytes/physiology , Endophytes/genetics , Plant Diseases/microbiology , Microbiota , Bacteria/genetics , Bacteria/classification , Fungi/physiology , Fungi/genetics
3.
Front Plant Sci ; 14: 1216297, 2023.
Article in English | MEDLINE | ID: mdl-37492777

ABSTRACT

Pea (Pisum sativum L.) is a widely cultivated legume of major importance for global food security and agricultural sustainability. Crenate broomrape (Orobanche crenata Forsk.) (Oc) is a parasitic weed severely affecting legumes, including pea, in the Mediterranean Basin and the Middle East. Previously, the identification of the pea line "ROR12", displaying resistance to Oc, was reported. Two-year field trials on a segregant population of 148 F7 recombinant inbred lines (RILs), originating from a cross between "ROR12" and the susceptible cultivar "Sprinter", revealed high heritability (0.84) of the "ROR12" resistance source. Genotyping-by-sequencing (GBS) on the same RIL population allowed the construction of a high-density pea linkage map, which was compared with the pea reference genome and used for quantitative trait locus (QTL) mapping. Three QTLs associated with the response to Oc infection, named PsOcr-1, PsOcr-2, and PsOcr-3, were identified, with PsOcr-1 explaining 69.3% of the genotypic variance. Evaluation of the effects of different genotypic combinations indicated additivity between PsOcr-1 and PsOcr-2, and between PsOcr-1 and PsOcr-3, and epistasis between PsOcr-2 and PsOcr-3. Finally, three Kompetitive Allele Specific PCR (KASP) marker assays were designed on the single-nucleotide polymorphisms (SNPs) associated with the QTL significance peaks. Besides contributing to the development of pea genomic resources, this work lays the foundation for the obtainment of pea cultivars resistant to Oc and the identification of genes involved in resistance to parasitic Orobanchaceae.

4.
Front Plant Sci ; 14: 1171195, 2023.
Article in English | MEDLINE | ID: mdl-37123837

ABSTRACT

Almond [Prunus dulcis Miller (D. A. Webb), syn. Prunus amygdalus L.)] is the major tree nut crop worldwide in terms of production and cultivated area. Almond domestication was enabled by the selection of individuals bearing sweet kernels, which do not accumulate high levels of the toxic cyanogenic glucoside amygdalin. Previously, we showed that the Sweet kernel (Sk) gene, controlling the kernel taste in almond, encodes a basic helix loop helix (bHLH) transcription factor regulating the amygdalin biosynthetic pathway. In addition, we characterized a dominant allele of this gene, further referred to as Sk-1, which originates from a C1036→T missense mutation and confers the sweet kernel phenotype. Here we provide evidence indicating that the allele further referred to as Sk-2, originally detected in the cultivar "Atocha" and arising from a T989→G missense mutation, is also dominantly inherited and confers the sweet kernel phenotype in almond cultivated germplasm. The use of single nucleotide polymorphism (SNP) data from genotyping by sequencing (GBS) for population structure and hierarchical clustering analyses indicated that Sk-2 occurs in a group of related genotypes, including the widespread cultivar "Texas", descending from the same ancestral population. KASP and dual label functional markers were developed for the accurate and high-throughput selection of the Sk-1 and Sk-2 alleles, and the genotyping of a panel of 134 almond cultivars. Overall, our results provide further insights on the understanding of the almond cultivation history. In addition, molecular marker assays and genotypic data presented in this study are expected to be of major interest for the conduction of almond breeding programs, which often need to select sweet kernel individuals in segregant populations.

5.
Front Plant Sci ; 14: 1163315, 2023.
Article in English | MEDLINE | ID: mdl-37063219

ABSTRACT

Powdery mildew (PM) is one of the most important diseases of greenhouse and field-grown tomatoes. Viruses can intervene beneficially on plant performance in coping with biotic and abiotic stresses. Tomato yellow leaf curl Sardinia virus (TYLCSV) has been reported recently to induce tolerance against drought stress in tomato, and its C4 protein acts as the main causal factor of tolerance. However, its role in response to biotic stresses is still unknown. In this study, transgenic tomato plants carrying the TYLCSV C4 protein were exposed to biotic stress following the inoculation with Oidium neolycopersici, the causal agent of tomato PM. Phytopathological, anatomic, molecular, and physiological parameters were evaluated in this plant pathosystem. Heterologous TYLCSV C4 expression increased the tolerance of transgenic tomato plants to PM, not only reducing symptom occurrence, but also counteracting conidia adhesion and secondary hyphae elongation. Pathogenesis-related gene expression and salicylic acid production were found to be higher in tomato transgenic plants able to cope with PM compared to infected wild-type tomato plants. Our study contributes to unraveling the mechanism leading to PM tolerance in TYLCSV C4-expressing tomato plants. In a larger context, the findings of TYLCSV C4 as a novel PM defense inducer could have important implications in deepening the mechanisms regulating the management of this kind of protein to both biotic and abiotic stresses.

6.
Plants (Basel) ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36145789

ABSTRACT

Genetic structure and distinctive features of landraces, such as adaptability to local agro-ecosystems and specific qualitative profiles, can be substantially altered by the massive introduction of allochthonous germplasm. The landrace known as "Cipolla rossa di Acquaviva" (Acquaviva red onion, further referred to as ARO) is traditionally cultivated and propagated in a small area of the Apulia region (southern Italy). However, the recent rise of its market value and cultivation area is possibly causing genetic contamination with foreign propagating material. In this work, genotyping-by-sequencing (GBS) was used to characterize genetic variation of seven onion populations commercialized as ARO, as well as one population of the landrace "Montoro" (M), which is phenotypically similar, but originates from another cultivation area and displays different qualitative features. A panel of 5011 SNP markers was used to perform parametric and non-parametric genetic structure analyses, which supported the hypothesis of genetic contamination of germplasm commercialized as ARO with a gene pool including the M landrace. Four ARO populations formed a core genetic group, homogeneous and clearly distinct from the other ARO and M populations. Conversely, the remaining three ARO populations did not display significant differences with the M population. A set of private alleles for the ARO core genetic group was identified, indicating the possibility to trace the ARO landrace by means of a SNP-based molecular barcode. Overall, the results of this study provide a framework for further breeding activities and the traceability of the ARO landrace.

7.
Hortic Res ; 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35043171

ABSTRACT

Pea (Pisum sativum L. subsp. sativum) is one of the oldest domesticated species and a widely cultivated legume. In this study, we combined next generation sequencing (NGS) data referring to two genotyping-by-sequencing (GBS) libraries, each one prepared from a different Pisum germplasm collection. The selection of single nucleotide polymorphism (SNP) loci called in both germplasm collections caused some loss of information; however, this did not prevent the obtainment of one of the largest datasets ever used to explore pea biodiversity, consisting of 652 accessions and 22 127 markers. The analysis of population structure reflected genetic variation based on geographic patterns and allowed the definition of a model for the expansion of pea cultivation from the domestication centre to other regions of the world. In genetically distinct populations, the average decay of linkage disequilibrium (LD) ranged from a few bases to hundreds of kilobases, thus indicating different evolutionary histories leading to their diversification. Genome-wide scans resulted in the identification of putative selective sweeps associated with domestication and breeding, including genes known to regulate shoot branching, cotyledon colour and resistance to lodging, and the correct mapping of two Mendelian genes. In addition to providing information of major interest for fundamental and applied research on pea, our work describes the first successful example of integration of different GBS datasets generated from ex situ collections - a process of potential interest for a variety of purposes, including conservation genetics, genome-wide association studies, and breeding.

8.
Front Plant Sci ; 12: 723879, 2021.
Article in English | MEDLINE | ID: mdl-34484283

ABSTRACT

The recent outbreak of the Olive Quick Decline Syndrome (OQDS), caused by Xylella fastidiosa subsp. pauca (Xf), is dramatically altering ecosystem services in the peninsula of Salento (Apulia Region, southeastern Italy). Here we report the accomplishment of several exploratory missions in the Salento area, resulting in the identification of thirty paucisymptomatic or asymptomatic plants in olive orchards severely affected by the OQDS. The genetic profiles of such putatively resistant plants (PRPs), assessed by a selection of ten simple sequence repeat (SSR) markers, were compared with those of 141 Mediterranean cultivars. Most (23) PRPs formed a genetic cluster (K1) with 22 Italian cultivars, including 'Leccino' and 'FS17', previously reported as resistant to Xf. The remaining PRPs displayed relatedness with genetically differentiated germplasm, including a cluster of Tunisian cultivars. Markedly lower colonization levels were observed in PRPs of the cluster K1 with respect to control plants. Field evaluation of four cultivars related to PRPs allowed the definition of partial resistance in the genotypes 'Frantoio' and 'Nocellara Messinese'. Some of the PRPs identified in this study might be exploited in cultivation, or as parental clones of breeding programs. In addition, our results indicate the possibility to characterize resistance to Xf in cultivars genetically related to PRPs.

9.
Plants (Basel) ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803432

ABSTRACT

Genotyping by sequencing (GBS) was used to analyze relationships among cowpea and asparagus bean landraces from southern Italy and to assess the utility of this technology to study taxonomy in a wider panel, including V. unguiculata cultigroups, subspecies, and other Vigna species. The analysis of SNPs derived from GBS highlighted that, among the cowpea landraces, the African samples were separated from the other material, while, for the Italian landraces, a certain clustering depending on seed color/pattern was observed in the dendrogram. When examining the V. unguiculata species complex, a clear separation between the two groups of wild subspecies, i.e., the allogamous wild perennials and the perennial out/inbreds, could be observed, the former representing the more ancestral wild progenitors of V. unguiculata. The species V. vexillata appeared more closely related to V. unguiculata than to the other Vigna species analyzed.

10.
Hortic Res ; 8(1): 15, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33423037

ABSTRACT

Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.

11.
Data Brief ; 34: 106660, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33376764

ABSTRACT

This dataset is referred to a collection of 41 faba bean (Vicia faba L.) and 15 lentil (Lens culinaris Medik.) accessions from the ex situ repository of the Institute of Biosciences and Bioresources of the Italian National Research Council (CNR-IBBR). All the accessions were grown at the experimental farm "P. Martucci" of the University of Bari "Aldo Moro" (41°01'22.1'' N 16°54'21.0'' E) during the growing season 2017-2018, according to a randomized block design with two replicates, each constituted by 10 individual plants. The dataset reports raw and elaborated analytical data determined on the flour produced from individual accessions, concerning proximate composition, bioactive compounds, antioxidant activity, fatty acid composition, and physicochemical and functional properties. Elaborated data might be used to understand the compositional variability within the species and, together with raw data, to highlight peculiar accessions characterized by valuable nutritional and/or technological attitude useful in research institutions and food industries. Furthermore, the data can be used for genetic studies aimed at identifying genomic regions underlying nutritional and technological traits.

12.
Front Genet ; 11: 447, 2020.
Article in English | MEDLINE | ID: mdl-32587600

ABSTRACT

High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype-phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.

13.
Front Genet ; 11: 217, 2020.
Article in English | MEDLINE | ID: mdl-32373150

ABSTRACT

The first breeding program in the world for durum wheat was conceived in Italy in the early 1900s. Over the decades, pressure exerted by natural and artificial selection could have progressively reduced the genetic diversity of the durum wheat germplasm. In the present study, a large panel of Italian durum wheat accessions that includes landraces, old and modern cultivars was subjected to genotyping using the Illumina iSelect 15K wheat SNP array. The aim was to assess the impact that selection has in shaping Italian durum wheat genetic diversity and to exploit the patterns of genetic diversity between populations to identify molecular signatures of divergence and selection. Relatively small differences in genetic diversity have been observed among accessions, which have been selected and cultivated in Italy over the past 150 years. Indeed, directional selection combined with that operated by farmers/breeders resulted in the increase of linkage disequilibrium (LD) and in changes of the allelic frequencies in DNA regions that control important agronomic traits. Results from this study also show that major well-known genes and/or QTLs affecting plant height (RHT), earliness (VRN, PPD) and grain quality (GLU, PSY, PSD, LYC, PPO, LOX3) co-localized with outlier SNP loci. Interestingly, many of these SNPs fall in genomic regions where genes involved in nitrogen metabolism are. This finding highlights the key role these genes have played in the transition from landraces to modern cultivars. Finally, our study remarks on the need to fully exploit the genetic diversity of Italian landraces by intense pre-breeding activities aimed at introducing a new source of adaptability and resistance in the genetic background of modern cultivars, to contrast the effect of climate change. The list of divergent loci and loci under selection associated with useful agronomic traits represents an invaluable resource to detect new allelic variants for target genes and for guiding new genomic selection programs in durum wheat.

14.
Antioxidants (Basel) ; 9(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32214012

ABSTRACT

Dietary habits are crucially important to prevent the development of lifestyle-associated diseases. Diets supplemented with chickpeas have numerous benefits and are known to improve body fat composition. The present study was undertaken to characterize two genetically and phenotypically distinct accessions, MG_13 and PI358934, selected from a global chickpea collection. Rat hepatoma FaO cells treated with a mixture of free fatty acids (FFAs) (O/P) were used as an in vitro model of hepatic steatosis. In parallel, a high-fat diet (HFD) animal model was also established. In vitro and in vivo studies revealed that both chickpea accessions showed a significant antioxidant ability. However, only MG_13 reduced the lipid over-accumulation in steatotic FaO cells and in the liver of HFD fed mice. Moreover, mice fed with HFD + MG_13 displayed a lower level of glycemia and aspartate aminotransferase (AST) than HFD mice. Interestingly, exposure to MG_13 prevented the phosphorylation of the inflammatory nuclear factor kappa beta (NF-kB) which is upregulated during HFD and known to be linked to obesity. To conclude, the comparison of the two distinct chickpea accessions revealed a beneficial effect only for the MG_13. These findings highlight the importance of studies addressing the functional characterization of chickpea biodiversity and nutraceutical properties.

15.
Plants (Basel) ; 9(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085407

ABSTRACT

Onion (Allium cepa L.) is the second most important vegetable crop worldwide and is widely appreciated for its health benefits. Despite its significant economic importance and its value as functional food, onion has been poorly investigated with respect to its genetic diversity. Herein, we surveyed the genetic variation in the "Acquaviva red onion" (ARO), a landrace with a century-old history of cultivation in a small town in the province of Bari (Apulia, Southern of Italy). A set of 11 microsatellite markers were used to explore the genetic variation in a germplasm collection consisting of 13 ARO populations and three common commercial types. Analyses of genetic structure with parametric and non-parametric methods highlighted that the ARO represents a well-defined gene pool, clearly distinct from the Tropea and Montoro landraces with which it is often mistaken. In order to provide a description of bulbs, usually used for fresh consumption, soluble solid content and pungency were evaluated, showing higher sweetness in the ARO with respect to the two above mentioned landraces. Overall, the present study is useful for the future valorization of the ARO, which could be promoted through quality labels which could contribute to limit commercial frauds and improve the income of smallholders.

16.
Data Brief ; 27: 104612, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31667322

ABSTRACT

The data article refers to the paper "Nutritional, physico-chemical and functional characterization of a global chickpea collection" [1]. The data are referred to a germplasm collection of 57 chickpea accessions from the ex situ repositories of the United States Department of Agriculture (USDA), the Department of Plant, Soil and Food Science of the University of Bari, Italy (DiSSPA), and the Institute of Biosciences and Bioresources of the Italian National Research Council (CNR-IBBR). Thirty-six accessions, belonging to desi and kabuli types, were representative of the geographic distribution of chickpea global cultivation, whereas twenty-one accessions, referable to the Apulian black type, derived from different area of the Apulian region, south of Italy. All the accessions were grown at the experimental farm "P. Martucci" of the University of Bari "Aldo Moro" (41°01'22.1″ N 16°54'21.0″ E) during the growing season 2017-2018, according to a randomized block design with two replicates, each replicate formed by 30 individual plants. This article reports the data of the proximate composition, the total bioactive compounds content, the fatty acid composition and the physico-chemical and functional properties of chickpea flour. Information provided in this article can be used by food industry to develop chickpea-based foods and by geneticists for studies of association mapping aimed at the identification of genomic regions controlling the nutritional and technological traits.

17.
Front Genet ; 10: 872, 2019.
Article in English | MEDLINE | ID: mdl-31620173

ABSTRACT

Cultivated lentil (Lens culinaris Medik.) is one of the oldest domesticated crops and one of the most important grain legumes worldwide. The Mediterranean Basin holds large part of lentil biodiversity; however, no genetic structure was defined within the Mediterranean gene pool. In this study, we used high-throughput genotyping by sequencing to resolve the genetic structure of the Mediterranean ex situ lentil collection held at the Italian National Research Council. Sequencing of a 188-plex genotyping-by-sequencing library and bioinformatics treatment of data yielded 6,693 single nucleotide polymorphisms. Analysis of nonredundant genotypes with nonparametric and parametric methods highlighted the occurrence of five highly differentiated genetic clusters. Clustering could be related to geographic patterns and phenotypic traits, indicating that post-domestication routes introducing cultivation in Mediterranean countries and selection were major forces shaping lentil population structure. The estimation of the fixation index FST at individual single nucleotide polymorphism loci allowed the identification of distinctive alleles across clusters, suggesting the possibility to set up molecular keys for the assignment of lentil germplasm to specific genetic groups. Finally, significant associations between markers and phenotypic data were identified. Overall, the results of this study are of major importance for lentil conservation genetics and breeding and provide insights on the lentil evolutionary history.

18.
BMC Plant Biol ; 19(1): 150, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30995906

ABSTRACT

BACKGROUND: Powdery mildew (PM) is a widespread fungal disease of plants in temperate climates, causing significant economic losses in agricultural settings. Specific homologs of the MLO gene family are PM susceptibility factors, as their loss-of function results in durable PM resistance (mlo resistance) in several plant species. The role of MLO susceptibility genes in plant-pathogen interactions is still elusive, however it is known that they are strongly upregulated following PM infection. RESULTS: In this study, we investigated the structure of 414 Putative Promoter Regions (PPRs) of MLO genes and highlighted motif and regulatory element patterns related to genomic relationships among species and phylogenetic distance among homologs. A TC box-like motif and a thymine-rich motif were found to be overrepresented in MLO genes transcriptionally upregulated upon infection with PM fungi. As proof of concept, we showed that the expression of a melon (Cucumis melo L.) gene enriched for the motifs above mentioned was strongly upregulated upon infection with the PM fungus Podosphaera xanthii. CONCLUSION: While identifying a candidate MLO susceptibility gene in melon, this study provides insight on the transcriptional control of MLO genes and indicates diagnostic features useful to identify MLO susceptibility genes across species affected by the PM disease.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Genes, Plant , Promoter Regions, Genetic , Ascomycota/physiology , Base Sequence , Computational Biology , Cucurbitaceae/genetics , Cucurbitaceae/microbiology , Gene Expression Regulation, Plant , Nucleotide Motifs/genetics , Phylogeny , Plant Diseases/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , Up-Regulation/genetics
19.
Plant Physiol ; 178(3): 1096-1111, 2018 11.
Article in English | MEDLINE | ID: mdl-30297455

ABSTRACT

Almond (Prunus dulcis) is the principal Prunus species in which the consumed and thus commercially important part of the fruit is the kernel. As a result of continued selection, the vast majority of almonds have a nonbitter kernel. However, in the field, there are trees carrying bitter kernels, which are toxic to humans and, consequently, need to be removed. The toxicity of bitter almonds is caused by the accumulation of the cyanogenic diglucoside amygdalin, which releases toxic hydrogen cyanide upon hydrolysis. In this study, we identified and characterized the enzymes involved in the amygdalin biosynthetic pathway: PdCYP79D16 and PdCYP71AN24 as the cytochrome P450 (CYP) enzymes catalyzing phenylalanine-to-mandelonitrile conversion, PdUGT94AF3 as an additional monoglucosyl transferase (UGT) catalyzing prunasin formation, and PdUGT94AF1 and PdUGT94AF2 as the two enzymes catalyzing amygdalin formation from prunasin. This was accomplished by constructing a sequence database containing UGTs known, or predicted, to catalyze a ß(1→6)-O-glycosylation reaction and a Basic Local Alignment Search Tool search of the draft version of the almond genome versus these sequences. Functional characterization of candidate genes was achieved by transient expression in Nicotiana benthamiana Reverse transcription quantitative polymerase chain reaction demonstrated that the expression of PdCYP79D16 and PdCYP71AN24 was not detectable or only reached minute levels in the sweet almond genotype during fruit development, while it was high and consistent in the bitter genotype. Therefore, the basis for the sweet kernel phenotype is a lack of expression of the genes encoding the two CYPs catalyzing the first steps in amygdalin biosynthesis.


Subject(s)
Amygdalin/metabolism , Cytochrome P-450 Enzyme System/metabolism , Prunus dulcis/enzymology , Amygdalin/chemistry , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Gene Expression , Genotype , Glucosides/chemistry , Glucosides/metabolism , Nitriles/chemistry , Nitriles/metabolism , Nuts , Phenotype , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus dulcis/chemistry , Prunus dulcis/genetics , Nicotiana/genetics , Nicotiana/metabolism
20.
PLoS One ; 13(10): e0205988, 2018.
Article in English | MEDLINE | ID: mdl-30352087

ABSTRACT

Exploiting the biodiversity of crops and their wild relatives is fundamental for maintaining and increasing food security. The species Cynara cardunculus includes three taxa: the globe artichoke, one of the most important Mediterranean vegetables, the leafy cardoon, and the wild cardoon. In this study, genotyping by sequencing (GBS) was successfully applied to reveal thousands of polymorphisms in a C. cardunculus germplasm collection, including 65 globe artichoke, 9 leafy cardoon, and 21 wild cardoon samples. The collection showed a strong population structure at K = 2, separating the globe artichoke from the leafy and wild cardoon. At higher K values, further substructures were observed, in which the wild cardoon was separated from the leafy cardoon, and the latter included the Spanish wild cardoons, while the wild sample from Portugal was admixed. Moreover, subpopulations within the globe artichoke set were highlighted. Structure analysis restricted to the globe artichoke dataset pointed out genetic differentiation between the ˝Catanesi˝ typology and all the other samples (K = 2). At higher values of K, the separation of the ˝Catanesi˝ group still held true, and green headed landraces from Apulia region, Italy (˝Green Apulian˝) formed a distinct subpopulation. ˝Romaneschi˝ artichoke types fell in a variable group with admixed samples, indicating that they should not be considered as a genetically uniform typology. The results of principal component analysis and Neighbor-Joining hierarchical clustering were consistent with structure results, and in addition provided a measure of genetic relationships among individual genotypes. Both analyses attributed the wild material from Spain and Portugal to the cultivated cardoon group, supporting the idea that this might be indeed a feral form of the leafy cardoon. Different reproductive habit and possibly selective pressure led to a slower LD decay in artichoke compared to cardoon. Genotyping by sequencing has proven a reliable methodology to obtain valuable SNPs and assess population genetics in C. cardunculus.


Subject(s)
Cynara scolymus/genetics , Cynara/genetics , Genotyping Techniques/methods , Sequence Analysis, DNA/methods , Genotype , Linkage Disequilibrium/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...