Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786024

ABSTRACT

In recent years, clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) protein have emerged as a revolutionary gene editing tool to treat inherited disorders affecting different organ systems, such as blood and muscles. Both hematological and neuromuscular genetic disorders benefit from genome editing approaches but face different challenges in their clinical translation. The ability of CRISPR/Cas9 technologies to modify hematopoietic stem cells ex vivo has greatly accelerated the development of genetic therapies for blood disorders. In the last decade, many clinical trials were initiated and are now delivering encouraging results. The recent FDA approval of Casgevy, the first CRISPR/Cas9-based drug for severe sickle cell disease and transfusion-dependent ß-thalassemia, represents a significant milestone in the field and highlights the great potential of this technology. Similar preclinical efforts are currently expanding CRISPR therapies to other hematologic disorders such as primary immunodeficiencies. In the neuromuscular field, the versatility of CRISPR/Cas9 has been instrumental for the generation of new cellular and animal models of Duchenne muscular dystrophy (DMD), offering innovative platforms to speed up preclinical development of therapeutic solutions. Several corrective interventions have been proposed to genetically restore dystrophin production using the CRISPR toolbox and have demonstrated promising results in different DMD animal models. Although these advances represent a significant step forward to the clinical translation of CRISPR/Cas9 therapies to DMD, there are still many hurdles to overcome, such as in vivo delivery methods associated with high viral vector doses, together with safety and immunological concerns. Collectively, the results obtained in the hematological and neuromuscular fields emphasize the transformative impact of CRISPR/Cas9 for patients affected by these debilitating conditions. As each field suffers from different and specific challenges, the clinical translation of CRISPR therapies may progress differentially depending on the genetic disorder. Ongoing investigations and clinical trials will address risks and limitations of these therapies, including long-term efficacy, potential genotoxicity, and adverse immune reactions. This review provides insights into the diverse applications of CRISPR-based technologies in both preclinical and clinical settings for monogenic blood disorders and muscular dystrophy and compare advances in both fields while highlighting current trends, difficulties, and challenges to overcome.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Humans , Genetic Therapy/methods , CRISPR-Cas Systems/genetics , Animals , Gene Editing/methods , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/genetics , Clinical Trials as Topic , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Blood Adv ; 8(6): 1449-1463, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38290102

ABSTRACT

ABSTRACT: During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Erythropoiesis/genetics , Erythrocytes , Cell Differentiation/genetics , Erythroblasts/metabolism
3.
Nat Commun ; 14(1): 7668, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996457

ABSTRACT

Uncovering the mechanisms regulating hematopoietic specification not only would overcome current limitations related to hematopoietic stem and progenitor cell (HSPC) transplantation, but also advance cellular immunotherapies. However, generating functional human induced pluripotent stem cell (hiPSC)-derived HSPCs and their derivatives has been elusive, necessitating a better understanding of the developmental mechanisms that trigger HSPC specification. Here, we reveal that early activation of the Nod1-Ripk2-NF-kB inflammatory pathway in endothelial cells (ECs) primes them to switch fate towards definitive hemogenic endothelium, a pre-requisite to specify HSPCs. Our genetic and chemical embryonic models show that HSPCs fail to specify in the absence of Nod1 and its downstream kinase Ripk2 due to a failure on hemogenic endothelial (HE) programming, and that small Rho GTPases coordinate the activation of this pathway. Manipulation of NOD1 in a human system of definitive hematopoietic differentiation indicates functional conservation. This work establishes the RAC1-NOD1-RIPK2-NF-kB axis as a critical intrinsic inductor that primes ECs prior to HE fate switch and HSPC specification. Manipulation of this pathway could help derive a competent HE amenable to specify functional patient specific HSPCs and their derivatives for the treatment of blood disorders.


Subject(s)
Hemangioblasts , Induced Pluripotent Stem Cells , Monomeric GTP-Binding Proteins , Humans , Cell Differentiation , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Monomeric GTP-Binding Proteins/metabolism , NF-kappa B/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
4.
bioRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693628

ABSTRACT

Tropomyosins coat actin filaments and impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. Prior work suggested that TPM1 regulated blood cell formation in vitro, but it was unclear how or when TPM1 affected hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, TPM1 knockout was found to augment developmental cell state transitions, as well as TNFα and GTPase signaling pathways, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses showed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Indeed, analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced the formation of HE during embryogenesis. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.

5.
Science ; 381(6656): 436-443, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37499029

ABSTRACT

Hematopoietic stem cells (HSCs) are the source of all blood cells over an individual's lifetime. Diseased HSCs can be replaced with gene-engineered or healthy HSCs through HSC transplantation (HSCT). However, current protocols carry major side effects and have limited access. We developed CD117/LNP-messenger RNA (mRNA), a lipid nanoparticle (LNP) that encapsulates mRNA and is targeted to the stem cell factor receptor (CD117) on HSCs. Delivery of the anti-human CD117/LNP-based editing system yielded near-complete correction of hematopoietic sickle cells. Furthermore, in vivo delivery of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) mRNA with CD117/LNP affected HSC function and permitted nongenotoxic conditioning for HSCT. The ability to target HSCs in vivo offers a nongenotoxic conditioning regimen for HSCT, and this platform could be the basis of in vivo genome editing to cure genetic disorders, which would abrogate the need for HSCT.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-kit , RNA, Messenger , Gene Editing/methods , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-kit/genetics , RNA, Messenger/genetics , Animals , Humans , Mice
6.
Blood ; 140(15): 1723-1734, 2022 10 13.
Article in English | MEDLINE | ID: mdl-35977098

ABSTRACT

Red blood cell (RBC) transfusion is one of the most common medical treatments, with more than 10 million units transfused per year in the United States alone. Alloimmunization to foreign Rh proteins (RhD and RhCE) on donor RBCs remains a challenge for transfusion effectiveness and safety. Alloantibody production disproportionately affects patients with sickle cell disease who frequently receive blood transfusions and exhibit high genetic diversity in the Rh blood group system. With hundreds of RH variants now known, precise identification of Rh antibody targets is hampered by the lack of appropriate reagent RBCs with uncommon Rh antigen phenotypes. Using a combination of human-induced pluripotent stem cell (iPSC) reprogramming and gene editing, we designed a renewable source of cells with unique Rh profiles to facilitate the identification of complex Rh antibodies. We engineered a very rare Rh null iPSC line lacking both RHD and RHCE. By targeting the AAVS1 safe harbor locus in this Rh null background, any combination of RHD or RHCE complementary DNAs could be reintroduced to generate RBCs that express specific Rh antigens such as RhD alone (designated D--), Goa+, or DAK+. The RBCs derived from these iPSCs (iRBCs) are compatible with standard laboratory assays used worldwide and can determine the precise specificity of Rh antibodies in patient plasma. Rh-engineered iRBCs can provide a readily accessible diagnostic tool and guide future efforts to produce an alternative source of rare RBCs for alloimmunized patients.


Subject(s)
Blood Group Antigens , Pluripotent Stem Cells , Transfusion Medicine , Alleles , Blood Group Antigens/genetics , Humans , Rh-Hr Blood-Group System/genetics
7.
Methods Mol Biol ; 2520: 321-333, 2022.
Article in English | MEDLINE | ID: mdl-35579838

ABSTRACT

The ability to engineer specific mutations in human embryonic stem cells (ECSs) or induced pluripotent stem cells (iPSCs) is extremely important in the modeling of human diseases and the study of biological processes. While CRISPR/Cas9 can robustly generate gene knockouts (KOs) and gene loci modifications in coding sequences of iPSCs, it remains difficult to produce monoallelic mutations or modify specific nucleotides in noncoding sequences due to technical constraints.Here, we describe how to leverage cytosine (BE4max) and adenine (ABEmax) base editors to introduce precise mutations in iPSCs without inducing DNA double-stranded breaks. This chapter illustrates how to design and clone gRNAs, evaluate editing efficiency, and detect genomic edits at specific sites in iPSCs through the utilization of base editing technology.


Subject(s)
CRISPR-Cas Systems , Induced Pluripotent Stem Cells , Adenine , CRISPR-Cas Systems/genetics , Cytosine , Genome, Human , Humans
8.
Front Genome Ed ; 3: 682171, 2021.
Article in English | MEDLINE | ID: mdl-34714297

ABSTRACT

[This corrects the article DOI: 10.3389/fgeed.2020.609650.].

9.
Curr Opin Hematol ; 28(5): 308-314, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34397590

ABSTRACT

PURPOSE OF REVIEW: Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS: A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY: iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.


Subject(s)
Blood Platelet Disorders , Cell Differentiation , Genetic Diseases, Inborn , Hematopoiesis , Models, Genetic , Pluripotent Stem Cells/metabolism , Animals , Blood Platelet Disorders/genetics , Blood Platelet Disorders/metabolism , Blood Platelet Disorders/therapy , Blood Platelets/metabolism , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/therapy , Humans , Megakaryocytes/metabolism
10.
Stem Cell Reports ; 16(6): 1458-1467, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34019812

ABSTRACT

Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Hematopoiesis , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/metabolism , Genetic Predisposition to Disease , Humans , Models, Biological , Mutation , Phenotype , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , ETS Translocation Variant 6 Protein
11.
Blood Adv ; 5(5): 1137-1153, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33635334

ABSTRACT

ß-thalassemias (ß-thal) are a group of blood disorders caused by mutations in the ß-globin gene (HBB) cluster. ß-globin associates with α-globin to form adult hemoglobin (HbA, α2ß2), the main oxygen-carrier in erythrocytes. When ß-globin chains are absent or limiting, free α-globins precipitate and damage cell membranes, causing hemolysis and ineffective erythropoiesis. Clinical data show that severity of ß-thal correlates with the number of inherited α-globin genes (HBA1 and HBA2), with α-globin gene deletions having a beneficial effect for patients. Here, we describe a novel strategy to treat ß-thal based on genome editing of the α-globin locus in human hematopoietic stem/progenitor cells (HSPCs). Using CRISPR/Cas9, we combined 2 therapeutic approaches: (1) α-globin downregulation, by deleting the HBA2 gene to recreate an α-thalassemia trait, and (2) ß-globin expression, by targeted integration of a ß-globin transgene downstream the HBA2 promoter. First, we optimized the CRISPR/Cas9 strategy and corrected the pathological phenotype in a cellular model of ß-thalassemia (human erythroid progenitor cell [HUDEP-2] ß0). Then, we edited healthy donor HSPCs and demonstrated that they maintained long-term repopulation capacity and multipotency in xenotransplanted mice. To assess the clinical potential of this approach, we next edited ß-thal HSPCs and achieved correction of α/ß globin imbalance in HSPC-derived erythroblasts. As a safer option for clinical translation, we performed editing in HSPCs using Cas9 nickase showing precise editing with no InDels. Overall, we described an innovative CRISPR/Cas9 approach to improve α/ß globin imbalance in thalassemic HSPCs, paving the way for novel therapeutic strategies for ß-thal.


Subject(s)
beta-Thalassemia , Animals , CRISPR-Cas Systems , Hematopoietic Stem Cells/metabolism , Humans , Mice , alpha-Globins/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy
12.
Nat Commun ; 11(1): 4146, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792546

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Commun ; 11(1): 3778, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728076

ABSTRACT

Targeted genome editing has a great therapeutic potential to treat disorders that require protein replacement therapy. To develop a platform independent of specific patient mutations, therapeutic transgenes can be inserted in a safe and highly transcribed locus to maximize protein expression. Here, we describe an ex vivo editing approach to achieve efficient gene targeting in human hematopoietic stem/progenitor cells (HSPCs) and robust expression of clinically relevant proteins by the erythroid lineage. Using CRISPR-Cas9, we integrate different transgenes under the transcriptional control of the endogenous α-globin promoter, recapitulating its high and erythroid-specific expression. Erythroblasts derived from targeted HSPCs secrete different therapeutic proteins, which retain enzymatic activity and cross-correct patients' cells. Moreover, modified HSPCs maintain long-term repopulation and multilineage differentiation potential in transplanted mice. Overall, we establish a safe and versatile CRISPR-Cas9-based HSPC platform for different therapeutic applications, including hemophilia and inherited metabolic disorders.


Subject(s)
Cell Engineering/methods , Gene Editing , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Line , Female , Gene Expression Regulation , Hemophilia A/therapy , Humans , Metabolic Diseases/therapy , Mice , Promoter Regions, Genetic/genetics , Transplantation, Autologous/methods , Transplantation, Heterologous , alpha-Globins/genetics , alpha-Globins/metabolism
14.
Front Genome Ed ; 2: 609650, 2020.
Article in English | MEDLINE | ID: mdl-34713234

ABSTRACT

Genome-editing technologies have the potential to correct most genetic defects involved in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can correct most of the mutations affecting the same gene with a single therapeutic strategy (gene replacement) or provide novel functions to edited cells (gene addition). Targeting a selected genomic harbor can reduce insertional mutagenesis risk, while enabling the exploitation of endogenous promoters, or selected chromatin contexts, to achieve specific transgene expression levels/patterns and the modulation of disease-modifier genes. In this review, we will discuss targeted gene insertion and the advantages and limitations of different genomic harbors currently under investigation for various gene therapy applications.

15.
Blood Adv ; 3(3): 301-311, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30705032

ABSTRACT

A sizable proportion of hemophilia inhibitor patients fails immune tolerance induction and requires bypass agents for long-term bleed management. Recombinant human-activated coagulation Factor VII (rhFVIIa) is an on-demand bypass hemostatic agent for bleeds in hemophilia inhibitor patients. Prophylactic use of rhFVIIa may enable sustained hemostatic management of inhibitor patients, but the critical relationship of rhFVIIa circulating levels and clinical outcome in that setting remains unclear. To address this in vivo, we used the rat hemophilia A (HA) model that exhibits spontaneous bleeds and allows longitudinal studies with sufficient statistical power. We simulated activated Factor VII (FVIIa) prophylaxis by adeno-associated virus (AAV) gene transfer of a rat FVIIa transgene. Compared with naive HA animals, rat FVIIa continuous expression affected the overall observed bleeds, which were resolved with on-demand administration of recombinant rat FVIIa. Specifically, although 91% of naive animals exhibited bleeds, this was reduced to 83% and 33% in animals expressing less than 708 ng/mL (<14 nM) and at least 708 ng/mL (≥14 nM) rat FVIIa, respectively. No bleeds occurred in animals expressing higher than 1250 ng/mL (>25 nM). Rat FVIIa expression of at least 708 ng/mL was also sufficient to normalize the blood loss after a tail vein injury. Continuous, AAV-mediated rat FVIIa transgene expression had no apparent adverse effects in the hemostatic system of HA rats. This work establishes for the first time a dose dependency and threshold of circulating FVIIa antigen levels for reduction or complete elimination of bleeds in a setting of FVIIa-based HA prophylaxis.


Subject(s)
Factor VIIa/genetics , Genetic Therapy/methods , Hemophilia A/genetics , Hemophilia A/therapy , Animals , Blood Coagulation/genetics , Dependovirus/genetics , Factor VIIa/biosynthesis , Factor VIIa/isolation & purification , HEK293 Cells , Hemophilia A/blood , Humans , Phenotype , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Transgenes
16.
Mol Ther ; 27(1): 137-150, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30424953

ABSTRACT

Editing the ß-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of ß-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the ß-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with ß-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the ß-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/physiology , Genetic Therapy/methods , Hematopoietic Stem Cells/metabolism , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/therapy , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Hematopoietic Stem Cells/cytology , Hemoglobinopathies/genetics , Hemoglobinopathies/metabolism , Hemoglobinopathies/therapy , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Plasmids/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/metabolism , beta-Thalassemia/therapy
17.
Blood ; 131(17): 1960-1973, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29519807

ABSTRACT

Naturally occurring, large deletions in the ß-globin locus result in hereditary persistence of fetal hemoglobin, a condition that mitigates the clinical severity of sickle cell disease (SCD) and ß-thalassemia. We designed a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) strategy to disrupt a 13.6-kb genomic region encompassing the δ- and ß-globin genes and a putative γ-δ intergenic fetal hemoglobin (HbF) silencer. Disruption of just the putative HbF silencer results in a mild increase in γ-globin expression, whereas deletion or inversion of a 13.6-kb region causes a robust reactivation of HbF synthesis in adult erythroblasts that is associated with epigenetic modifications and changes in chromatin contacts within the ß-globin locus. In primary SCD patient-derived hematopoietic stem/progenitor cells, targeting the 13.6-kb region results in a high proportion of γ-globin expression in erythroblasts, increased HbF synthesis, and amelioration of the sickling cell phenotype. Overall, this study provides clues for a potential CRISPR/Cas9 genome editing approach to the therapy of ß-hemoglobinopathies.


Subject(s)
Anemia, Sickle Cell , CRISPR-Cas Systems , Fetal Hemoglobin , Gene Editing , Genetic Loci , Hematopoietic Stem Cells/metabolism , beta-Globins/genetics , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Cell Line , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Hematopoietic Stem Cells/pathology , Humans , beta-Globins/metabolism
18.
Blood ; 127(5): 565-71, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26702064

ABSTRACT

Factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder treated by infusion of fresh-frozen plasma, plasma-derived FVII concentrates and low-dose recombinant activated FVII. Clinical data suggest that a mild elevation of plasma FVII levels (>10% normal) results in improved hemostasis. Research dogs with a G96E missense FVII mutation (FVII-G96E) have <1% FVII activity. By western blot, we show that they have undetectable plasmatic antigen, thus representing the most prevalent type of human FVII deficiency (low antigen/activity). In these dogs, we determine the feasibility of a gene therapy approach using liver-directed, adeno-associated viral (AAV) serotype 8 vector delivery of a canine FVII (cFVII) zymogen transgene. FVII-G96E dogs received escalating AAV doses (2E11 to 4.95E13 vector genomes [vg] per kg). Clinically therapeutic expression (15% normal) was attained with as low as 6E11 vg/kg of AAV and has been stable for >1 year (ongoing) without antibody formation to the cFVII transgene. Sustained and supraphysiological expression of 770% normal was observed using 4.95E13 vg/kg of AAV (2.6 years, ongoing). No evidence of pathological activation of coagulation or detrimental animal physiology was observed as platelet counts, d-dimer, fibrinogen levels, and serum chemistries remained normal in all dogs (cumulative 6.4 years). We observed a transient and noninhibitory immunoglobulin G class 2 response against cFVII only in the dog receiving the highest AAV dose. In conclusion, in the only large-animal model representing the majority of FVII mutation types, our data are first to demonstrate the feasibility, safety, and long-term duration of AAV-mediated correction of FVII deficiency.


Subject(s)
Factor VII Deficiency/genetics , Factor VII Deficiency/therapy , Factor VII/genetics , Genetic Therapy , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Protein Precursors/genetics , Adenoviridae/genetics , Animals , Dogs , Factor VII Deficiency/blood , Gene Expression , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Point Mutation , Transgenes
19.
Blood ; 124(7): 1157-65, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24957146

ABSTRACT

Recombinant activated human factor VII (rhFVIIa) is an established hemostatic agent in hemophilia, but its mechanism of action remains unclear. Although tissue factor (TF) is its natural receptor, rhFVIIa also interacts with the endothelial protein C receptor (EPCR) through its γ-carboxyglutamic acid (Gla) domain, with unknown hemostatic consequences in vivo. Here, we study whether EPCR facilitates rhFVIIa hemostasis in hemophilia using a mouse model system. Mouse activated FVII (mFVIIa) is functionally homologous to rhFVIIa, but binds poorly to mouse EPCR (mEPCR). We modified mFVIIa to gain mEPCR binding using 3 amino acid changes in its Gla domain (L4F/L8M/W9R). The resulting molecule mFVIIa-FMR specifically bound mEPCR in vitro and in vivo and was identical to mFVIIa with respect to TF affinity and procoagulant functions. In macrovascular injury models, hemophilic mice administered mFVIIa-FMR exhibited superior hemostatic activity compared with mFVIIa. This was abolished by blocking mEPCR and was absent in ex vivo whole blood coagulation assays, implicating a specific mFVIIa-FMR and endothelial mEPCR interaction. Because mFVIIa-FMR models the TF-dependent and EPCR binding properties of rhFVIIa, our data unmask a novel contribution of EPCR on the action of rhFVIIa administration in hemophilia, prompting the rational design of improved and safer rhFVIIa therapeutics.


Subject(s)
Blood Coagulation Factors/metabolism , Factor VIIa/pharmacology , Hemophilia A/drug therapy , Hemostasis/drug effects , Receptors, Cell Surface/metabolism , 1-Carboxyglutamic Acid/metabolism , Amino Acids/genetics , Amino Acids/metabolism , Animals , Binding Sites/genetics , Binding, Competitive , Blood Coagulation/drug effects , Blood Coagulation Factors/genetics , CHO Cells , Cricetinae , Cricetulus , Factor VIIa/administration & dosage , Factor VIIa/genetics , Hemophilia A/blood , Humans , Kinetics , Male , Mice, Inbred C57BL , Protein Binding , Receptors, Cell Surface/genetics , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Thrombelastography , Thromboplastin/metabolism
20.
Discov Med ; 15(85): 379-89, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23819952

ABSTRACT

Gene transfer trials with adeno-associated virus (AAV) vectors have initiated to unveil the therapeutic potential of this approach, with some of the most exciting results coming from clinical studies of gene transfer for hemophilia B, congenital blindness, and the recent market approval of the first AAV-based gene therapy in Europe. With clinical development, however, some of the limitations of in vivo gene transfer have emerged; in particular the host immune system represents an important obstacle to be overcome in terms of both safety and efficacy of gene transfer in vivo with AAV vectors. Results in humans undergoing gene transfer indicate that capsid-specific T cell responses directed against transduced cells may limit the duration of transgene expression following AAV gene transfer, and similarly anti-AAV neutralizing antibodies can completely prevent transduction of a target tissue, resulting in lack of efficacy. Anti-AAV neutralizing antibodies are highly prevalent in humans, and the frequency of subjects with detectable titers can reach up to two thirds of the population. The approach to the problem of preexisting humoral immunity to AAV so far has been the exclusion of seropositive subjects, but this solution is far from being optimal. Several additional strategies have been proposed and tested in a variety of preclinical animal models. Future studies will help defining the optimal strategy, or combination of strategies, to successfully treat subjects with preexisting antibodies to AAV due to natural infection or to prior administration of AAV vectors. These advancements will likely have a significant impact on the field of gene transfer with AAV vectors.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/immunology , Immunity, Humoral/immunology , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...