Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 6(3): 341-55, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19319861

ABSTRACT

Constructed wetlands represent a progressive approach to the wastewater treatment. A fundamental prerequisite of the efficient water quality improvement is the presence of redox potential gradients (connected with the aeration of the system) inside the vegetation bed. Redox properties of a constructed wetland were tested in three longitudinal transects crossing the vegetation bed from the inflow zone to the outflow using diverse indicators (e.g., Fe(III)/Fe(II), SO(2-)(4)/S(2-)). Approximately 10-25% of iron was reoxidized in samples taken 10 m from the inflow zone in 2006. Redox processes of iron in artificial (constructed wetland) and natural (peat bog) ecosystems were compared. The peat bog was characterized with higher percentages of Fe(II) (usually ca. 90-100%). Thus, the aeration of the peat land was lower in comparison with the constructed wetland. The constructed wetland efficiently reduced sulfates (average concentrations of 44.7 and 11.2 mg/l at the inflow and the outflow, resp., in 2007). Organics, expressed as COD(Cr) and BOD(5), and NH+(4) were removed with efficiencies of 86.4, 92.2, and 60.4%, respectively. However, total phosphorus (redox processes play a negligible role in this case) was removed only with 39.6% efficiency. Redox properties of the wetland did not significantly depend on the heterogeneity of the treated wastewater flow.


Subject(s)
Ecosystem , Oxidation-Reduction , Plants/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Wetlands , Aerobiosis , Anaerobiosis , Iron/metabolism , Manganese/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Soil , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...