Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 11: 1894, 2020.
Article in English | MEDLINE | ID: mdl-32973785

ABSTRACT

Interleukin (IL)-17A is a key driver of inflammation and the principal target of anti-IL-17 therapeutic monoclonal antibodies. IL-17A, and its structurally similar family member IL-17F, have been shown to be functionally dysregulated in certain human immune-mediated inflammatory diseases such as psoriasis, psoriatic arthritis, and axial spondyloarthritis. Given the overlapping biology of these two cytokines, we postulated that dual neutralization of IL-17A and IL-17F may provide a greater depth of clinical response in IL-17-mediated diseases than IL-17A inhibition alone. We identified 496.g1, a humanized antibody with strong affinity for IL-17A but poor affinity for IL-17F. Affinity maturation of 496.g1 to 496.g3 greatly enhanced the affinity of the Fab fragment for IL-17F while retaining strong binding to IL-17A. As an IgG1, the affinity for IL-17A and IL-17F was 3.2 pM and 23 pM, respectively. Comparison of 496.g3 IgG1 with the commercially available anti-IL-17A monoclonal antibodies ixekizumab and secukinumab, by surface plasmon resonance and in a human in vitro IL-17A functional assay, showed that 496.g3 and ixekizumab display equivalent affinity for IL-17A, and that both antibodies are markedly more potent than secukinumab. In contrast to ixekizumab and secukinumab, 496.g3 exhibited the unique feature of also being able to neutralize the biological activity of IL-17F. Therefore, antibody 496.g3 was selected for clinical development for its ability to neutralize the biologic function of both IL-17A and IL-17F and was renamed bimekizumab (formerly UCB4940). Early clinical data in patients with psoriasis, in those with psoriatic arthritis, and from the Phase 2 studies in psoriasis, psoriatic arthritis, and ankylosing spondylitis, are encouraging and support the targeted approach of dual neutralization of IL-17A and IL-17F. Taken together, these findings provide the rationale for the continued clinical evaluation of bimekizumab in patients with immune-mediated inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Interleukin-17/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibody Affinity , Antibody Specificity , CHO Cells , Computer Simulation , Cricetulus , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Macaca fascicularis , Models, Biological , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/metabolism , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/metabolism
2.
J Autoimmun ; 111: 102435, 2020 07.
Article in English | MEDLINE | ID: mdl-32360069

ABSTRACT

The delta isoform of phosphoinositide 3-kinase (PI3Kδ) regulates various lymphocyte functions. Considering the key pro-inflammatory role of IL-17A and IL-17F cytokines in psoriasis and spondyloarthritis (SpA), we investigated the potential of PI3Kδ blockade to suppress IL-17A, IL-17F and associated pro-inflammatory cytokines that could synergize with IL-17A and IL-17F. Using in vitro studies with primary human cells and ex vivo studies with inflamed target tissues, we assessed if seletalisib, a selective PI3Kδ inhibitor, suppresses cytokine production by T cells and innate-like lymphocytes, and if seletalisib modulates the inflammatory responses in stromal cell populations in psoriasis (human dermal fibroblasts (HDF)) and SpA (fibroblast-like synoviocytes (FLS)). In vitro, seletalisib inhibited the production of pro-inflammatory cytokines, including IL-17A and IL-17F, from peripheral blood mononuclear cells (PBMCs), T helper 17 (Th17) cells as well as γδ-T cells and mucosal-associated invariant T cells. This inhibition resulted in decreased inflammatory activation of HDF in co-culture systems. Seletalisib was also efficacious in inhibiting SpA PBMCs and synovial fluid mononuclear cells (SFMCs) from producing pro-inflammatory cytokines. Furthermore, supernatant derived from cultured seletalisib-treated Th17 cells showed reduced potency for activating inflammatory responses from cultured SpA FLS and decreased their osteogenic differentiation capacity. Finally, analysis of inflamed SpA synovial tissue biopsies revealed activation of the PI3K-Akt-mTOR pathway. We observed that ex vivo seletalisib treatment of inflamed synovial tissue reduced IL-17A and IL-17F expression. Collectively, inhibition of PI3Kδ reduces the production of pro-inflammatory cytokines from IL-17-producing adaptive and innate-like lymphocytes and thereby inhibits downstream inflammatory and tissue remodeling responses. PI3Kδ-targeting may therefore represent a novel therapeutic avenue for the treatment of IL-17-mediated chronic inflammatory diseases such as psoriasis and SpA.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Fibroblasts/physiology , Lymphocytes/immunology , Psoriasis/immunology , Pyridines/pharmacology , Quinolines/pharmacology , Spondylitis, Ankylosing/immunology , Synoviocytes/physiology , Th17 Cells/immunology , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Female , Humans , Immunity, Innate , Interleukin-17/metabolism , Male , Middle Aged , Osteogenesis
3.
PLoS Comput Biol ; 14(10): e1006515, 2018 10.
Article in English | MEDLINE | ID: mdl-30346968

ABSTRACT

The development of novel therapeutics is urgently required for diseases where existing treatments are failing due to the emergence of resistance. This is particularly pertinent for parasitic infections of the tropics and sub-tropics, referred to collectively as neglected tropical diseases, where the commercial incentives to develop new drugs are weak. One such disease is schistosomiasis, a highly prevalent acute and chronic condition caused by a parasitic helminth infection, with three species of the genus Schistosoma infecting humans. Currently, a single 40-year old drug, praziquantel, is available to treat all infective species, but its use in mass drug administration is leading to signs of drug-resistance emerging. To meet the challenge of developing new therapeutics against this disease, we developed an innovative computational drug repurposing pipeline supported by phenotypic screening. The approach highlighted several protein kinases as interesting new biological targets for schistosomiasis as they play an essential role in many parasite's biological processes. Focusing on this target class, we also report the first elucidation of the kinome of Schistosoma japonicum, as well as updated kinomes of S. mansoni and S. haematobium. In comparison with the human kinome, we explored these kinomes to identify potential targets of existing inhibitors which are unique to Schistosoma species, allowing us to identify novel targets and suggest approved drugs that might inhibit them. These include previously suggested schistosomicidal agents such as bosutinib, dasatinib, and imatinib as well as new inhibitors such as vandetanib, saracatinib, tideglusib, alvocidib, dinaciclib, and 22 newly identified targets such as CHK1, CDC2, WEE, PAKA, MEK1. Additionally, the primary and secondary targets in Schistosoma of those approved drugs are also suggested, allowing for the development of novel therapeutics against this important yet neglected disease.


Subject(s)
Computational Biology/methods , Drug Repositioning/methods , Protein Kinase Inhibitors/pharmacology , Schistosoma/drug effects , Schistosomicides/pharmacology , Animals , Databases, Protein , Reproducibility of Results
4.
Sci Rep ; 7(1): 18111, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269854

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 7(1): 9963, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855577

ABSTRACT

Fibrosis is a common driver of end-stage organ failure in most organs. It is characterised by excessive accumulation of extracellular matrix (ECM) proteins. Therapeutic options are limited and novel treatments are urgently required, however current cell-based high-throughput screening (HTS) models to identify molecules affecting ECM accumulation are limited in their relevance or throughput. We report a novel sensitive approach which combines in situ fluorescent staining of accumulated decellularised ECM proteins with automated high-content microscopy. Using this method to measure ECM accumulation in a kidney cell model, we demonstrated good agreement with established radiolabelled amino acid incorporation assays: TGFß1 delivered a potent pro-fibrotic stimulus, which was reduced by TGFß antibody or the anti-fibrotic nintedanib. Importantly, our method also provides information about matrix organisation: the extent of ECM accumulation was unaffected by the BMP antagonist Gremlin-1 but a pronounced effect on matrix fibrillar organisation was revealed. This rapid, straightforward endpoint provides quantitative data on ECM accumulation and offers a convenient cross-species readout that does not require antibodies. Our method facilitates discovery of novel pro- and anti-fibrotic agents in 384-well plate format and may be widely applied to in vitro cell-based models in which matrix protein deposition reflects the underlying biology or pathology.


Subject(s)
Extracellular Matrix/chemistry , Fibrosis/pathology , Kidney Diseases/pathology , Microscopy, Fluorescence/methods , Proteins/analysis , Automation, Laboratory/methods , Cells, Cultured , Epithelial Cells/pathology , Humans , Models, Biological , Staining and Labeling/methods
6.
J Med Chem ; 59(15): 7075-88, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27396732

ABSTRACT

Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening (HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models for inhibition of SmTGR were developed and validated using the Organization for Economic Co-operation and Development (OECD) guidance. Using these models, we prioritized 29 compounds for further testing in two HCS platforms based on image analysis of assay plates. Among them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds representing new chemical scaffolds have activity against schistosomula and adult worms at low micromolar concentrations and therefore represent promising antischistosomal hits for further hit-to-lead optimization.


Subject(s)
Drug Discovery , Quantitative Structure-Activity Relationship , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Schistosomicides/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Models, Molecular , Molecular Structure , Schistosomicides/chemical synthesis , Schistosomicides/chemistry
7.
J Chem Inf Model ; 56(7): 1357-72, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27253773

ABSTRACT

Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.


Subject(s)
Anthelmintics/chemistry , Anthelmintics/pharmacology , Drug Design , Quantitative Structure-Activity Relationship , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , Animals , Anthelmintics/metabolism , Drug Evaluation, Preclinical , Molecular Conformation , Molecular Docking Simulation , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism
8.
PLoS Negl Trop Dis ; 10(4): e0004659, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27128493

ABSTRACT

An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization.


Subject(s)
Anthelmintics/isolation & purification , Anthelmintics/pharmacology , Drug Evaluation, Preclinical , Schistosoma mansoni/drug effects , Animals , Anthelmintics/toxicity , Biological Assay , Cell Line , Cell Survival/drug effects , High-Throughput Screening Assays , Humans , Larva/drug effects , Survival Analysis
9.
PLoS Negl Trop Dis ; 9(5): e0003801, 2015 May.
Article in English | MEDLINE | ID: mdl-25992548

ABSTRACT

Concerns over the possibility of resistance developing to praziquantel (PZQ), has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi) in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2) (Sm-Calm), that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310) (Sm-aPKC) resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600) and p38-MAPK, Sm-MAPK p38 (Smp_133020) resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC). For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability, these kinases may not represent suitable drug targets.


Subject(s)
RNA Interference , Schistosoma mansoni/drug effects , Animals , Calmodulin/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Drug Discovery , Erythrocytes/physiology , Genomics , Humans , Male , Praziquantel/pharmacology , Protein Kinase C beta/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Schistosoma mansoni/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , Polo-Like Kinase 1
10.
PLoS Negl Trop Dis ; 6(7): e1762, 2012.
Article in English | MEDLINE | ID: mdl-22860151

ABSTRACT

Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping.


Subject(s)
Anthelmintics/isolation & purification , Anthelmintics/pharmacology , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Parasitology/methods , Schistosoma/drug effects , Animals , Automation, Laboratory/methods , Image Processing, Computer-Assisted/methods , Larva/drug effects , Locomotion/drug effects , Time-Lapse Imaging/methods
11.
Int J Parasitol ; 41(13-14): 1335-45, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22036898

ABSTRACT

In this study, infective larvae of the parasitic helminth Schistosoma mansoni were shown to contain a large number of glycosylated components specific for the Mannose Receptor (MR; CD206), which is an important pattern recognition receptor (PRR) of the innate immune system. MR ligands were particularly rich in excretory/secretory (E/S) material released during transformation of cercariae into schistosomula, a process critical for infection of the host. E/S material from carboxyfluorescein diacetate succinimidyl ester (CFDA-SE)-labelled cercariae showed enhanced binding by cells lines that over-express the MR. Conversely, uptake was significantly lower by bone marrow-derived macrophages (MΦ) from MR(-/-) mice, although they were more active as judged by enhanced pro-inflammatory cytokine production and CD40 expression. After natural percutaneous infection of MR(-/-) mice with CFDA-SE-labelled parasites, there were fewer cells in the skin and draining lymph nodes that were CFDA-SE(+) compared with wild-type mice, implying reduced uptake and presentation of larval parasite antigen. However, antigen-specific proliferation of skin draining lymph node cells was significantly enhanced and they secreted markedly elevated levels of IFNγ but decreased levels of IL-4. In conclusion, we show that the MR on mononuclear phagocytic cells, which are plentiful in the skin, plays a significant role in internalising E/S material released by the invasive stages of the parasite which in turn modulates their production of pro-inflammatory cytokines. In the absence of the MR, antigen-specific CD4(+) cells are Th1 biased, suggesting that ligation of the MR by glycosylated E/S material released by schistosome larvae modulates the production of CD4(+) cell specific IFNγ.


Subject(s)
Interferon-gamma/immunology , Lectins, C-Type/immunology , Mannose-Binding Lectins/immunology , Receptors, Cell Surface/immunology , Receptors, Pattern Recognition/immunology , Schistosoma mansoni/physiology , Schistosomiasis mansoni/immunology , Animals , Female , Humans , Interferon-gamma/genetics , Lectins, C-Type/genetics , Male , Mannose Receptor , Mannose-Binding Lectins/genetics , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/genetics , Receptors, Pattern Recognition/genetics , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/parasitology , Th2 Cells/immunology
12.
PLoS Negl Trop Dis ; 5(8): e1269, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21858239

ABSTRACT

Eggs of the helminth Schistosoma mansoni accumulate in the colon following infection and generate Th2-biassed inflammatory granulomas which become down- modulated in size as the infection proceeds to chronicity. However, although CD4+CD25+FoxP3+ regulatory T cells (T(regs)) are known to suppress Th1-mediated colitis, it is not clear whether they control Th2-associated pathologies of the large intestine which characterise several helminth infections. Here we used a novel 3D-multiphoton confocal microscopy approach to visualise and quantify changes in the size and composition of colonic granulomas at the acute and chronic phases of S. mansoni infection. We observed decreased granuloma size, as well as reductions in the abundance of DsRed+ T cells and collagen deposition at 14 weeks (chronic) compared to 8 weeks (acute) post-infection. Th2 cytokine production (i.e. IL-4, IL-5) in the colonic tissue and draining mesenteric lymph node (mLN) decreased during the chronic phase of infection, whilst levels of TGF-ß1 increased, co-incident with reduced mLN proliferative responses, granuloma size and fibrosis. The proportion of CD4+CD25+FoxP3+T(regs): CD4+ cells in the mLN increased during chronic disease, while within colonic granulomas there was an approximate 4-fold increase. The proportion of CD4+CD25+FoxP3+T(regs) in the mLN that were CD103+ and CCR5+ also increased indicating an enhanced potential to home to intestinal sites. CD4+CD25+ cells suppressed antigen-specific Th2 mLN cell proliferation in vitro, while their removal during chronic disease resulted in significantly larger granulomas, partial reversal of Th2 hypo-responsiveness and an increase in the number of eosinophils in colonic granulomas. Finally, transfer of schistosome infection-expanded CD4+CD25+T(regs) down-modulated the development of colonic granulomas, including collagen deposition. Therefore, CD4+CD25+FoxP3+T(regs) appear to control Th2 colonic granulomas during chronic infection, and are likely to play a role in containing pathology during intestinal schistosomiasis.


Subject(s)
Colon/pathology , Granuloma/pathology , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/pathology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , CD4 Antigens/analysis , Colon/immunology , Colon/parasitology , Cytokines/metabolism , Female , Forkhead Transcription Factors , Granuloma/immunology , Granuloma/parasitology , Imaging, Three-Dimensional , Interleukin-2 Receptor alpha Subunit/analysis , Luminescent Proteins/analysis , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Schistosomiasis mansoni/immunology , T-Lymphocytes, Regulatory/chemistry
13.
PLoS Negl Trop Dis ; 3(10): e528, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19829705

ABSTRACT

Infection of the mammalian host by the parasitic helminth Schistosoma mansoni is accompanied by the release of excretory/secretory molecules (ES) from cercariae which aid penetration of the skin. These ES molecules are potent stimulants of innate immune cells leading to activation of acquired immunity. At present however, it is not known which cells take up parasite antigen, nor its intracellular fate. Here, we develop a technique to label live infectious cercariae which permits the imaging of released antigens into macrophages (MPhi) and dendritic cells (DCs) both in vitro and in vivo. The amine reactive tracer CFDA-SE was used to efficiently label the acetabular gland contents of cercariae which are released upon skin penetration. These ES products, termed '0-3hRP', were phagocytosed by MHC-II(+) cells in a Ca(+) and actin-dependent manner. Imaging of a labelled cercaria as it penetrates the host skin over 2 hours reveals the progressive release of ES material. Recovery of cells from the skin shows that CFDA-SE labelled ES was initially (3 hrs) taken up by Gr1(+)MHC-II(-) neutrophils, followed (24 hrs) by skin-derived F4/80(+)MHC-II(lo) MPhi and CD11c(+) MHC-II(hi) DC. Subsequently (48 hrs), MPhi and DC positive for CFDA-SE were detected in the skin-draining lymph nodes reflecting the time taken for antigen-laden cells to reach sites of immune priming. Comparison of in vitro-derived MPhi and DC revealed that MPhi were slower to process 0-3hRP, released higher quantities of IL-10, and expressed a greater quantity of arginase-1 transcript. Combined, our observations on differential uptake of cercarial ES by MPhi and DC suggest the development of a dynamic but ultimately balanced response that can be potentially pushed towards immune priming (via DC) or immune regulation (via MPhi).


Subject(s)
Antigens, Helminth/immunology , Dendritic Cells/immunology , Fluorescent Dyes/metabolism , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Skin/immunology , Animals , Antigen Presentation , Antigens, Helminth/chemistry , Antigens, Helminth/metabolism , Dendritic Cells/chemistry , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Disease Models, Animal , Female , Fluoresceins/metabolism , Humans , Luminescent Measurements , Macrophages/chemistry , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Schistosoma mansoni/chemistry , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Skin/chemistry , Skin/metabolism , Skin/parasitology , Succinimides/metabolism
14.
Int J Parasitol ; 37(2): 209-20, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17157855

ABSTRACT

Infectious cercariae of Schistosoma mansoni gain entry to the mammalian host through the skin where they induce a transient inflammatory influx of mononuclear cells. Some of these cells have antigen-presenting cell function (MHCII+) and have been reported to migrate to the skin-draining lymph nodes (sdLN) where they have the potential to prime CD4+ cells of the acquired immune response. Here, in mice exposed to vaccinating radiation-attenuated schistosome larvae, which induce high levels of protective immunity to challenge infection, we describe the parasite-induced migration of Langerhans cells (LCs) from the epidermal site of immunisation to the sdLN using a specific monoclonal antibody that recognises langerin (CD207). CD207+ cells with dendritic morphology were abundant in the epidermis at all times and their migration into the dermis was detected soon after vaccination. All CD207+ LCs were MHCII+ but not all MHCII+ cells in the skin were CD207+. LCs migrated from the dermis in enhanced numbers after vaccination, as detected in dermal exudate populations recovered after in vitro culture of skin biopsies. Elevated numbers of CD207+ LCs were also detected in the sdLN from 24h to 4 days after vaccination. However, compared with other dermal-derived antigen-presenting cells that were CD207-MHCII+ or CD207-CD11c+, the relative numbers of CD207+ cells in the dermal exudate population and in the sdLN were very small. Furthermore, the migration of CD207+ cells after exposure to 'protective' radiation-attenuated, compared with 'non-protective' normal cercariae, was similar in terms of numbers and kinetics. Together, these studies suggest that CD207+ LCs are only a minor component of the antigen-presenting cell population that migrates from the epidermis and they are unlikely to be important in the priming of protective CD4+ cells in the sdLN.


Subject(s)
Antigens, Surface/immunology , Epidermal Cells , Langerhans Cells/immunology , Lectins, C-Type/immunology , Lymph Nodes/immunology , Mannose-Binding Lectins/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Animals , Antibodies, Monoclonal/pharmacology , Dermis/cytology , Female , Immunophenotyping , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...