Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 879: 162997, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36966831

ABSTRACT

In this study, field measurement was conducted using an integrated online monitoring system to characterize heterogeneous properties and light absorption of refractory black carbon (rBC). rBC particles are mainly from the incomplete combustion of carbonaceous fuels. With the data collected from a single particle soot photometer, thickly coated (BCkc) and thinly coated (BCnc) particles are characterized with their lag times. With different responses to the precipitation, a dramatical decline of 83 % in the number concentration of BCkc is shown after rainfall, while that of BCnc decreases by 39 %. There is a contrast in core size distribution that BCkc is always with larger particle sizes but has smaller core mass median diameters (MMD) than BCnc. The mean rBC-containing particle mass absorption cross-section (MAC) is 6.70 ± 1.52 m2 g-1, while the corresponding rBC core is 4.90 ± 1.02 m2 g-1. Interestingly, there are wide variations in the core MAC values which range by 57 % from 3.79 to 5.95 m2 g-1, which are also closely related to those of the whole rBC-containing particles with a Pearson correlation of 0.58 (p < 0.01). Errors would be made if we eliminate the discrepancies and set the core MAC as a constant when calculating absorption enhancement (Eabs). In this study, the mean Eabs is 1.37 ± 0.11 while the source apportionment shows that there are five contributors of Eabs including secondary aging (37 %), coal combustion (26 %), fugitive dust (15 %), biomass burning (13 %) and traffic-related emissions (9 %). Secondary aging is found to be the highest contributor due to the liquid phase reactions in formations of secondary inorganic aerosol. Our study characterizes property diversities and provides insights into the sources impacting the light absorption of rBC and will be helpful for controlling it in the future.

2.
Sci Total Environ ; 851(Pt 1): 158127, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35987247

ABSTRACT

A multi-parametric experimental campaign was performed in Agri Valley (Basilicata, southern Italy) from July 2017 to January 2018. The investigated area, though basically rural and devoted to agricultural activities, hosts a huge on-shore oil reservoir, i.e. Centro Olio Val d'Agri (COVA), bringing substantial environmental modifications and impacts to the district landscape. Daily concentrations of PM1 aerosol samples, Equivalent Black Carbon and number size distributions were evaluated. Chemical aerosol speciation based on elemental and ion analyses were carried out and source apportionment by Positive Matrix Factorization (PMF) was applied to reconstruct PM1 source profile. The most significant emission sources found are torches from the oil treatment facility (37 % w/w), an unresolved factor constituted by soil resuspension, Saharan dust, and biomass burning (24 % w/w), ammonium sulphate (23 % w/w), emissions from the oil desulfurization (Claus process) (13 % w/w), and traffic + road dust (3 % w/w). SEM analysis on PM1 single particles allowed to confirm the finding from PMF including the occurrence of elemental sulfur associated with the Claus process. The novelty of the present study consists in the identification of this latter fingerprint.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Ammonium Sulfate , Carbon/analysis , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Soil , Sulfur/analysis
3.
Sci Rep ; 9(1): 11824, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31413342

ABSTRACT

Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models.

4.
Sci Total Environ ; 584-585: 381-392, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28153397

ABSTRACT

Simultaneous measurements of columnar aerosol microphysical and optical properties, as well as PM2.5 chemical compositions, were made during two types of spring pollution episodes in Tianjin, a coastal megacity of China. The events were investigated using field observations, satellite data, model simulations, and meteorological fields. The lower Ångström Exponent and the higher aerosol optical depth on 29 March, compared with the earlier event on 26 March, implied a dominance of coarse mode particles - this was consistent with the differences in volume-size distributions. Based on the single scattering spectra, the dominant absorber (at blue wavelength) changed from black carbon during less polluted days to brown carbon on 26 March and dust on 29 March. The concentrations of major PM2.5 species for these two episodes also differed, with the earlier event enriched in pollution-derived substances and the later with mineral dust elements. The formation mechanisms of these two pollution episodes were also examined. The 26 March episode was attributed to the accumulation of both local emissions and anthropogenic pollutants transported from the southwest of Tianjin under the control of high pressure system. While the high aerosol loading on 29 March was caused by the mixing of transported dust from northwest source region with local urban pollution. The mixing of transported anthropogenic pollutants and dust with local emissions demonstrated the complexity of springtime pollution in Tianjin. The synergy of multi-scale observations showed excellent potential for air pollution study.

5.
Opt Express ; 16(20): 15816-33, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18825219

ABSTRACT

The paper presents a novel methodology to retrieve the foreign-broadened water vapor continuum absorption coefficients in the spectral range 240 to 590 cm(-1) and is the first estimation of the continuum coefficient at wave numbers smaller than 400 cm(-1) under atmospheric conditions. The derivation has been accomplished by processing a suitable set of atmospheric emitted spectral radiance observations obtained during the March 2007 Alps campaign of the ECOWAR project (Earth Cooling by WAter vapor Radiation). It is shown that, in the range 450 to 600 cm(-1), our findings are in good agreement with the widely used Mlawer, Tobin-Clough, Kneizys-Davies (MT CKD) continuum. Below 450 cm(-1) however the MT CKD model overestimates the magnitude of the continuum coefficient.


Subject(s)
Optics and Photonics , Water/chemistry , Algorithms , Atmosphere , Fourier Analysis , Gases , Models, Statistical , Models, Theoretical , Spectrophotometry, Infrared/methods , Temperature
6.
Appl Opt ; 47(21): 3909-19, 2008 Jul 20.
Article in English | MEDLINE | ID: mdl-18641761

ABSTRACT

We evaluate the spectral quality, radiometric noise, and retrieval performance of a Fourier transform infrared spectrometer, which has been developed for recording spectrally resolved observations in a region of the spectrum which is important both for the science of Earth's climate and applications, such as the remote sensing of temperature and atmospheric gas species. This spectral region extends from 100 to 1600 cm(-1) and encompasses the two fundamental, rotation and vibration, absorption bands of water vapor. The instrument is a customized version of a Bomem AERI (Atmospheric Emitted Radiance Interferometer) spectrometer, whose spectral coverage has been extended in the far infrared with the use of uncooled pyroelectric detectors. Retrieval examples for water vapor and temperature profiles are shown, which also allow us to intercompare the retrieval performance of both H(2)O vibration and rotation bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...