Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 223(Pt 2): 121734, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298262

ABSTRACT

The long-lived radioisotopes of Th and Pa are unique tracers for quantifying rates of biogeochemical processes in the ocean. However, their generally low concentrations (sub-fg/kg for 230Th and 231Pa and pg/kg for 232Th) in seawater make them difficult to measure. Here, we present a new approach to determine 232Th and 230Th using Nobias PA-1 chelating resin following a bulk-extraction technique, and report for the first time the use of this resin to measure 231Pa concentrations. This method has high extraction efficiency (>80%) at pH of 4.4 ± 0.2 and the lowest procedural blanks reported in the literature: 1.0 ± 0.2 pg, 0.10 ± 0.03 fg, and 0.02 ± 0.01 fg for 232Th, 230Th, and 231Pa, respectively, representing 3%, 0.02%, and 0.01% of the total dissolved 232Th, 230Th, and 231Pa found in 5 L of a typical low-concentration surface seawater sample from the subtropical Pacific Ocean. The procedure yields data with high precision for all three isotopes (0.76% for 232Th, 0.89% for 230Th, and 0.96% for 231Pa, 2σ), allowing us to reliably measure Th and Pa in the oceans even at concentrations as low as those found in surface waters of the South Pacific Ocean. The accuracy of this method was confirmed by the analysis of well-characterized standard solutions (SW STD 2010-1 and SW STD 2015-1) and seawater samples collected aboard the FS Sonne (cruise SO245) during the UltraPac cruise in the South Pacific Ocean. Simultaneous and rapid extraction of 232Th, 230Th and 231Pa from seawater, as well as the high precision and accuracy of this method makes it ideal for both spatially and temporally high-resolution studies.


Subject(s)
Chelating Agents , Seawater , Isotopes , Oceans and Seas
2.
Proc Natl Acad Sci U S A ; 116(20): 9753-9758, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31036647

ABSTRACT

Particulate organic carbon (POC) produced in the surface ocean sinks through the water column and is respired at depth, acting as a primary vector sequestering carbon in the abyssal ocean. Atmospheric carbon dioxide levels are sensitive to the length (depth) scale over which respiration converts POC back to inorganic carbon, because shallower waters exchange with the atmosphere more rapidly than deeper ones. However, estimates of this carbon regeneration length scale and its spatiotemporal variability are limited, hindering the ability to characterize its sensitivity to environmental conditions. Here, we present a zonal section of POC fluxes at high vertical and spatial resolution from the GEOTRACES GP16 transect in the eastern tropical South Pacific, based on normalization to the radiogenic thorium isotope 230Th. We find shallower carbon regeneration length scales than previous estimates for the oligotrophic South Pacific gyre, indicating less efficient carbon transfer to the deep ocean. Carbon regeneration is strongly inhibited within suboxic waters near the Peru coast. Canonical Martin curve power laws inadequately capture POC flux profiles at suboxic stations. We instead fit these profiles using an exponential function with flux preserved at depth, finding shallow regeneration but high POC sequestration below 1,000 m. Both regeneration length scales and POC flux at depth closely track the depths at which oxygen concentrations approach zero. Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modeling and future work to disentangle.

SELECTION OF CITATIONS
SEARCH DETAIL
...