Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38412535

ABSTRACT

The occurrence of abrupt dynamical transitions in the macroscopic state of a system has received growing attention. We present experimental evidence for abrupt transition via explosive synchronization in a real-world complex system, namely, a turbulent reactive flow system. In contrast to the paradigmatic continuous transition to a synchronized state from an initially desynchronized state, the system exhibits a discontinuous synchronization transition with a hysteresis. We consider the fluctuating heat release rate from the turbulent flames at each spatial location as locally coupled oscillators that are coupled to the global acoustic field in the confined system. We analyze the synchronization between these two subsystems during the transition to a state of oscillatory instability and discover that explosive synchronization occurs at the onset of oscillatory instability. Further, we explore the underlying mechanism of interaction between the subsystems and construct a mathematical model of the same.

2.
Chaos ; 34(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38198675

ABSTRACT

Real-world complex systems such as the earth's climate, ecosystems, stock markets, and combustion engines are prone to dynamical transitions from one state to another, with catastrophic consequences. State variables of such systems often exhibit aperiodic fluctuations, either chaotic or stochastic in nature. Often, the parameters describing a system vary with time, showing time dependency. Constrained by these effects, it becomes difficult to be warned of an impending critical transition, as such effects contaminate the precursory signals of the transition. Therefore, a need for efficient and reliable early-warning signals (EWSs) in such complex systems is in pressing demand. Motivated by this fact, in the present work, we analyze various EWSs in the context of a non-autonomous turbulent thermoacoustic system. In particular, we investigate the efficacy of different EWS in forecasting the onset of thermoacoustic instability (TAI) and their reliability with respect to the rate of change of the control parameter. This is the first experimental study of tipping points in a non-autonomous turbulent thermoacoustic system. We consider the Reynolds number (Re) as the control parameter, which is varied linearly with time at finite rates. The considered EWSs are derived from critical slowing down, spectral properties, and fractal characteristics of the system variables. The state of TAI is associated with large amplitude acoustic pressure oscillations that could lead thermoacoustic systems to break down. We consider acoustic pressure fluctuations as a potential system variable to perform the analysis. Our analysis shows that irrespective of the rate of variation of the control parameter, the Hurst exponent and variance of autocorrelation coefficients warn of an impending transition well in advance and are more reliable than other EWS measures. Additionally, we show the variation in the warning time to an impending TAI with rates of change of the control parameter. We also investigate the variation in amplitudes of the most significant modes of acoustic pressure oscillations with the Hurst exponent. Such variations lead to scaling laws that could be significant in prediction and devising control actions to mitigate TAI.

3.
Chaos ; 33(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38060796

ABSTRACT

Abrupt changes in the state of a system are often undesirable in natural and human-made systems. Such transitions occurring due to fast variations of system parameters are called rate-induced tipping (R-tipping). While a quasi-steady or sufficiently slow variation of a parameter does not result in tipping, a continuous variation of the parameter at a rate greater than a critical rate results in tipping. Such R-tipping would be catastrophic in real-world systems. We experimentally demonstrate R-tipping in a real-world complex system and decipher its mechanism. There is a critical rate of change of parameter above which the system undergoes tipping. We discover that there is another system variable varying simultaneously at a timescale different from that of the driver (control parameter). The competition between the effects of processes at these two timescales determines if and when tipping occurs. Motivated by the experiments, we use a nonlinear oscillator model, exhibiting Hopf bifurcation, to generalize such type of tipping to complex systems where multiple comparable timescales compete to determine the dynamics. We also explain the advanced onset of tipping, which reveals that the safe operating space of the system reduces with the increase in the rate of variations of parameters.

4.
Phys Rev E ; 107(2-1): 024219, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932584

ABSTRACT

In the context of statistical physics, critical phenomena are accompanied by power laws having a singularity at the critical point where a sudden change in the state of the system occurs. In this work we show that lean blowout (LBO) in a turbulent thermoacoustic system is accompanied by a power law leading to finite-time singularity. As a crucial discovery of the system dynamics approaching LBO, we unravel the existence of the discrete scale invariance (DSI). In this context, we identify the presence of log-periodic oscillations in the temporal evolution of the amplitude of the dominant mode of low-frequency oscillations (A_{f}) existing in pressure fluctuations preceding LBO. The presence of DSI indicates the recursive development of blowout. Additionally, we find that A_{f} shows a faster-than-exponential growth and becomes singular when blowout occurs. We then present a model that depicts the evolution of A_{f} based on log-periodic corrections to the power law associated with its growth. Using the model, we find that blowouts can be predicted even several seconds earlier. The predicted time of LBO is in good agreement with the actual time of occurrence of LBO obtained from the experiment.

5.
Chaos ; 32(4): 041104, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35489852

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly spread throughout our planet, bringing human lives to a standstill. Understanding the early transmission dynamics of a wave helps plan intervention strategies such as lockdowns that mitigate further spread, minimizing the adverse impact on humanity and the economy. Exponential growth of infections was thought to be the defining feature of an epidemic in its initial growth phase. Here we show that, contrary to common belief, early stages of extreme COVID-19 waves have an unbounded growth and finite-time singularity accompanying a hyperexponential power-law. The faster than exponential growth phase is hazardous and would entail stricter regulations to minimize further spread. Such a power-law description allows us to characterize COVID-19 waves better using single power-law exponents, rather than using piecewise exponentials. Furthermore, we identify the presence of log-periodic patterns decorating the power-law growth. These log-periodic oscillations may enable better prediction of the finite-time singularity. We anticipate that our findings of hyperexponential growth and log-periodicity will enable accurate modeling of outbreaks of COVID-19 or similar future outbreaks of other emergent epidemics.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Communicable Disease Control , Disease Outbreaks , Forecasting , Humans
6.
Chaos ; 31(9): 093131, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598450

ABSTRACT

Many fluid dynamic systems exhibit undesirable oscillatory instabilities due to positive feedback between fluctuations in their different subsystems. Thermoacoustic instability, aeroacoustic instability, and aeroelastic instability are some examples. When the fluid flow in the system is turbulent, the approach to such oscillatory instabilities occurs through a universal route characterized by a dynamical regime known as intermittency. In this paper, we extract the peculiar pattern of phase space attractors during the regime of intermittency by constructing recurrence networks corresponding to the phase space topology. We further train a convolutional neural network to classify the periodic and aperiodic structures in the recurrence networks and define a measure that indicates the proximity of the dynamical state to the onset of oscillatory instability. We show that this measure can predict the onset of oscillatory instabilities in three different fluid dynamic systems governed by different physical phenomena.

7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544867

ABSTRACT

Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible "normal forms" that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points.

8.
Chaos ; 31(1): 013116, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33754769

ABSTRACT

Many dynamical systems exhibit abrupt transitions or tipping as the control parameter is varied. In scenarios where the parameter is varied continuously, the rate of change of the control parameter greatly affects the performance of early warning signals (EWS) for such critical transitions. We study the impact of variation of the control parameter with a finite rate on the performance of EWS for critical transitions in a thermoacoustic system (a horizontal Rijke tube) exhibiting subcritical Hopf bifurcation. There is a growing interest in developing early warning signals for tipping in real systems. First, we explore the efficacy of early warning signals based on critical slowing down and fractal characteristics. From this study, lag-1 autocorrelation (AC) and Hurst exponent (H) are found to be good measures to predict the transition well before the tipping point. The warning time, obtained using AC and H, reduces with an increase in the rate of change of the control parameter following an inverse power law relation. Hence, for very fast rates, the warning time may be too short to perform any control action. Furthermore, we report the observation of a hyperexponential scaling relation between the AC and the variance of fluctuations during such a dynamic Hopf bifurcation. We construct a theoretical model for noisy Hopf bifurcation wherein the control parameter is continuously varied at different rates to study the effect of rate of change of the parameter on EWS. Similar results, including the hyperexponential scaling, are observed in the model as well.

9.
Sci Rep ; 10(1): 17405, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060639

ABSTRACT

Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomenon. We call this phenomenon spectral condensation and study its occurrence in fluid mechanical, optical and electronic systems. We define a set of spectral measures to quantify this condensation spanning several dynamical systems. Further, we uncover an inverse power law behaviour of spectral measures with the power corresponding to the dominant peak in the power spectrum in all the aforementioned systems.

10.
Chaos ; 30(6): 063152, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32611099

ABSTRACT

Many complex systems exhibit periodic oscillations comprising slow-fast timescales. In such slow-fast systems, the slow and fast timescales compete to determine the dynamics. In this study, we perform a recurrence analysis on simulated signals from paradigmatic model systems as well as signals obtained from experiments, each of which exhibit slow-fast oscillations. We find that slow-fast systems exhibit characteristic patterns along the diagonal lines in the corresponding recurrence plot (RP). We discern that the hairpin trajectories in the phase space lead to the formation of line segments perpendicular to the diagonal line in the RP for a periodic signal. Next, we compute the recurrence networks (RNs) of these slow-fast systems and uncover that they contain additional features such as clustering and protrusions on top of the closed-ring structure. We show that slow-fast systems and single timescale systems can be distinguished by computing the distance between consecutive state points on the phase space trajectory and the degree of the nodes in the RNs. Such a recurrence analysis substantially strengthens our understanding of slow-fast systems, which do not have any accepted functional forms.

11.
Chaos ; 29(10): 103115, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31675825

ABSTRACT

Liquid rockets are prone to large amplitude oscillations, commonly referred to as thermoacoustic instability. This phenomenon causes unavoidable developmental setbacks and poses a stern challenge to accomplish the mission objectives. Thermoacoustic instability arises due to the nonlinear interaction between the acoustic and the reactive flow subsystems in the combustion chamber. In this paper, we adopt tools from dynamical systems and complex systems theory to understand the dynamical transitions from a state of stable operation to thermoacoustic instability in a self-excited model multielement liquid rocket combustor based on an oxidizer rich staged combustion cycle. We observe that this transition to thermoacoustic instability occurs through a sequence of bursts of large amplitude periodic oscillations. Furthermore, we show that the acoustic pressure oscillations in the combustor pertain to different dynamical states. In contrast to a simple limit cycle oscillation, we show that the system dynamics switches between period-3 and period-4 oscillations during the state of thermoacoustic instability. We show several measures based on recurrence quantification analysis and multifractal theory, which can diagnose the dynamical transitions occurring in the system. We find that these measures are more robust than the existing measures in distinguishing the dynamical state of a rocket engine. Furthermore, these measures can be used to validate models and computational fluid dynamics simulations, aiming to characterize the performance and stability of rockets.

SELECTION OF CITATIONS
SEARCH DETAIL
...