Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0192606, 2018.
Article in English | MEDLINE | ID: mdl-29447215

ABSTRACT

We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.


Subject(s)
DNA Methylation , Diet, High-Fat , Gene Expression , Mothers , Obesity/epidemiology , Animals , Female , Mice , Risk Factors
2.
J Diabetes Metab Disord ; 17(2): 297-307, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30918865

ABSTRACT

PURPOSE: Obesity is linked to cognitive dysfunction in humans and rodents, and its effects can be passed on to the next generation. However, the extent of these effects is not well understood. The purpose of this study was to determine the effect of a prenatal maternal high-fat diet and an individual high-fat diet in inbred mice. METHODS: We varied maternal diet and offspring diet to test the hypothesis that a high-fat diet would increase anxiety, reduce activity levels, and impair nest-building. First, we fed a high-fat (HF) or low-fat (LF) diet to genetically identical female Small (SM/J) mice and mated them with LF males. We cross-fostered all offspring to LF-fed SM/J nurses and weaned them onto an HF or LF diet. We weighed the mice weekly and we tested anxiety with the Open Field Test, activity levels with instantaneous scan sampling, and nest building using the Deacon Scale. RESULTS: Diet significantly affected weight, with HF females weighing 28.2 g (± 1.4 g SE) and LF females weighing 15.1 g (± 1.6 g SE) at 17 weeks old. The offspring's own diet had major behavioral effects. HF mice produced more fecal boli and urinations in the Open Field Test, built lower-quality nests, and had lower activity in adulthood than LF mice. The only trait that a prenatal maternal diet significantly affected was whether the offspring built their nests inside or outside of a hut. CONCLUSIONS: Offspring diet, but not prenatal maternal diet, affected a wide range of behaviors in these mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...