Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37242972

ABSTRACT

Natural rubber composites were reinforced by the co-fillers 'hydrochar' (HC), obtained by hydrothermal carbonization of hardwood sawdust and commercial carbon black (CB). The content of the combined fillers was kept constant while their ratio was varied. The aim was to test the suitability of HC as a partial filler in natural rubber. Due to its larger particle size and hence smaller specific surface area, large amounts of HC reduced the crosslinking density in the composites. On the other hand, due to its unsaturated organic character, HC was found to display interesting chemical effects: if it was used as the exclusive filler component, it displayed a very strong anti-oxidizing effect, which greatly stabilized the rubber composite against oxidative crosslinking (and hence embrittlement). HC also affected the vulcanization kinetics in different ways, depending on the HC/CB ratio. Composites with HC/CB ratios 20/30 and 10/40 displayed interesting chemical stabilization in combination with fairly good mechanical properties. The performed analyses included vulcanization kinetics, tensile properties, determination of density of permanent and reversible crosslinking in dry and swollen states, chemical stability tests including TGA, thermo-oxidative aging tests in air at 180 °C, simulated weathering in real use conditions ('Florida test'), and thermo-mechanical analyses of degraded samples. Generally, the results indicate that HC could be a promising filler material due to its specific reactivity.

2.
Polymers (Basel) ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050369

ABSTRACT

The kinetic model, encompassing the curing and reversion phenomena of the NR/SBR rubber vulcanization process, was developed by means of the finite element method simultaneously with heat transfer equations, including heat generation due to curing reactions. The vulcanization simulation was conducted for three spheres of different diameters (1, 5 and 10 cm) and two rubber wheels, one of which was a commercial product of the rubber industry. The proposed advanced simulation model, based on products' two-dimensional axisymmetry, includes cooling after vulcanization, during which the crosslinking reactions continue to take place as a result of the products' heated interiors. As a criterion for removing the product from the mold, an average vulcanization degree of 0.9 was set, whereby, during cooling, the vulcanization degree increases, due to crosslinking reactions. Based on the minimal difference between the maximal and minimal vulcanization degrees, which did not exceed a value of 0.0142, the optimal process parameters for each product were determined, achieving homogeneity and obtaining high-quality rubber products, while simultaneously ensuring a more efficient vulcanization process and enhanced cost effectiveness for the rubber industry.

3.
Polymers (Basel) ; 15(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904417

ABSTRACT

A new generation biomass-based filler for natural rubber, 'hydrochar' (HC), was obtained by hydrothermal carbonization of hardwood waste (sawdust). It was intended as a potential partial replacement for the traditional carbon black (CB) filler. The HC particles were found (TEM) to be much larger (and less regular) than CB: 0.5-3 µm vs. 30-60 nm, but the specific surface areas were relatively close to each other (HC: 21.4 m2/g vs. CB: 77.8 m2/g), indicating a considerable porosity of HC. The carbon content of HC was 71%, up from 46% in sawdust feed. FTIR and 13C-NMR analyses indicated that HC preserved its organic character, but it strongly differs from both lignin and cellulose. Experimental rubber nanocomposites were prepared, in which the content of the combined fillers was set at 50 phr (31 wt.%), while the HC/CB ratios were varied between 40/10 and 0/50. Morphology investigations proved a fairly even distribution of HC and CB, as well as the disappearance of bubbles after vulcanization. Vulcanization rheology tests demonstrated that the HC filler does not hinder the process, but it significantly influences vulcanization chemistry, canceling scorch time on one hand and slowing down the reaction on the other. Generally, the results suggest that rubber composites in which 10-20 phr of CB are replaced by HC might be promising materials. The use of HC in the rubber industry would represent a high-tonnage application for hardwood waste.

4.
J Food Sci Technol ; 58(1): 311-322, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33505075

ABSTRACT

In order to have a better insight into the quality of minor cereals, the aim of this research was to evaluate the nutritional, biochemical, physical and rheological properties of barley, rye, triticale, oat, sorghum and millet flours. Generally, all flours could be divided into two groups according to mineral content, ω-6/ω-3 fatty acids ratio and amino acid composition. Sorghum flour was characterized by the highest total phenolic content and was the only flour which contained detectable amounts of tannins. Sorghum and millet flours differed from other flours by lower water absorption index and higher temperature of starch gelatinization. Additionally, sorghum and millet flours could be analysed by Mixolab only using constant hydration and require more time to obtain complete hydration than other flours. All flours would require modification of standard breadmaking process in order to obtain quality of product similar to those already present at the market.

5.
J Prosthet Dent ; 111(4): 327-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24360017

ABSTRACT

STATEMENT OF PROBLEM: Poly(methyl-methacrylate) (PMMA) represents the most popular current denture material. However, its major drawbacks are insufficient ductility and strength. PURPOSE: The purpose of this study was to improve the mechanical properties of PMMA in denture base application by adding small quantities of nanosilica. MATERIAL AND METHOD: Silica nanoparticles were added to the liquid component of the tested materials. The standard heat polymerizing procedure was followed to obtain 6 PMMA--silicon dioxide (/SiO2) concentrations (0.023%, 0.046%, 0.091%, 0.23%, 0.46%, and 0.91% by volume). Microhardness and fracture toughness of each set of specimens was compared with the unmodified specimens. Furthermore, differential scanning calorimetry and scanning electron microscopy analyses were conducted, and the results obtained were correlated with the results of mechanical properties. RESULTS: It was found that the maximum microhardness and fracture toughness values of the materials tested were obtained for the lowest nanosilica content. A nanosilica content of 0.023% resulted in an almost unchanged glass transition temperature (Tg), whereas the maximum amount of nanosilica induced a considerable increase in Tg. A higher Tg indicated the possible existence of a thicker interfacial layer caused by the chain immobility due to the presence of the particles. However, scanning electron microscopy results demonstrated extensive agglomeration at 0.91% nanosilica, which may have prevented the formation of a homogenous reinforced field. At a nanosilica content of 0.023%, no agglomeration was observed, which probably influenced a more homogenous distribution of nanoparticles as well as uniform reinforcing fields. CONCLUSIONS: Low nanoparticle content yields superior mechanical properties along with the lower cost of nanocomposite synthesis.


Subject(s)
Dental Materials/chemistry , Denture Bases , Nanocomposites/chemistry , Polymethyl Methacrylate/chemistry , Silicon Dioxide/chemistry , Calorimetry, Differential Scanning , Cross-Linking Reagents/chemistry , Glass/chemistry , Hardness , Hot Temperature , Humans , Hydrophobic and Hydrophilic Interactions , Materials Testing , Methacrylates/chemistry , Methylmethacrylate/chemistry , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Stress, Mechanical , Surface Properties , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...