Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 2: 27, 2015.
Article in English | MEDLINE | ID: mdl-26664898

ABSTRACT

Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle (SM) cells are believed to play an essential role in the development of these illnesses. Vascular SM cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature, contractile SM cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of SM cell phenotype. Caveolin-3 is expressed in vivo in normal arterial SM cells, but its expression appears to be lost in cultured SM cells. Our data show that caveolin-3 expression in the A7r5 SM cell line is associated with increased expression of contractility markers such as SM α-actin, SM myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing SM cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic SM cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating SM function in atherosclerosis and restenosis.

2.
Cell Tissue Res ; 358(3): 821-31, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25322709

ABSTRACT

Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 (-/-) Apoe (-/-) mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 (+/+) Apoe (-/-) or Cav-1 (-/-) Apoe (-/-) mice and vice versa. We found that Cav-1 (+/+) mice harboring Cav-1 (-/-) BM-derived macrophages developed significantly larger lesions than Cav-1 (+/+) mice harboring Cav-1 (+/+) BM-derived macrophages. Cav-1 (-/-) macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.


Subject(s)
Atherosclerosis/pathology , Caveolin 1/metabolism , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Animals , Apoptosis/drug effects , Atherosclerosis/blood , Bone Marrow Transplantation , Caveolin 1/deficiency , Cytokines/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , Lipoproteins/blood , Macrophages, Peritoneal/drug effects , Mice, Inbred C57BL , Up-Regulation/drug effects
3.
Cell Cycle ; 13(4): 580-99, 2014.
Article in English | MEDLINE | ID: mdl-24434780

ABSTRACT

Mammography is an important screening modality for the early detection of DCIS and breast cancer lesions. More specifically, high mammographic density is associated with an increased risk of breast cancer. However, the biological processes underlying this phenomenon remain largely unknown. Here, we re-interrogated genome-wide transcriptional profiling data obtained from low-density (LD) mammary fibroblasts (n = 6 patients) and high-density (HD) mammary fibroblasts (n = 7 patients) derived from a series of 13 female patients. We used these raw data to generate a "breast density" gene signature consisting of>1250 transcripts that were significantly increased in HD fibroblasts, relative to LD fibroblasts. We then focused on the genes that were increased by ≥ 1.5-fold (P<0.05) and performed gene set enrichment analysis (GSEA), using the molecular signatures database (MSigDB). Our results indicate that HD fibroblasts show the upregulation and/or hyper-activation of several key cellular processes, including the stress response, inflammation, stemness, and signal transduction. The transcriptional profiles of HD fibroblasts also showed striking similarities to human tumors, including head and neck, liver, thyroid, lung, and breast cancers. This may reflect functional similarities between cancer-associated fibroblasts (CAFs) and HD fibroblasts. This is consistent with the idea that the presence of HD fibroblasts may be a hallmark of a pre-cancerous phenotype. In these biological processes, GSEA predicts that several key signaling pathways may be involved, including JNK1, iNOS, Rho GTPase(s), FGF-R, EGF-R, and PDGF-R-mediated signal transduction, thereby creating a pro-inflammatory, pro-proliferative, cytokine, and chemokine-rich microenvironment. HD fibroblasts also showed significant overlap with gene profiles derived from smooth muscle cells under stress (JNK1) and activated/infected macrophages (iNOS). Thus, HD fibroblasts may behave like activated myofibroblasts and macrophages, to create and maintain a fibrotic and inflammatory microenvironment. Finally, comparisons between the HD fibroblast gene signature and breast cancer tumor stroma revealed that JNK1 stress signaling is the single most significant biological process that is shared between these 2 data sets (with P values between 5.40E-09 and 1.02E-14), and is specifically associated with tumor recurrence. These results implicate "stromal JNK1 signaling" in the pathogenesis of human breast cancers and the transition to malignancy. Augmented TGF-ß signaling also emerged as a common feature linking high breast density with tumor stroma and breast cancer recurrence (P = 5.23E-05). Similarities between the HD fibroblast gene signature, wound healing, and the cancer-associated fibroblast phenotype were also noted. Thus, this unbiased informatics analysis of high breast density provides a novel framework for additional experimental exploration and new hypothesis-driven breast cancer research, with a focus on cancer prevention and personalized medicine.


Subject(s)
Breast Neoplasms/metabolism , Mammary Glands, Human/abnormalities , Mitogen-Activated Protein Kinase 8/metabolism , Neoplastic Stem Cells/metabolism , Breast Density , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mitogen-Activated Protein Kinase 8/genetics , Neoplastic Stem Cells/pathology , Signal Transduction , Transcriptome , Tumor Microenvironment/genetics
4.
Cell Tissue Res ; 356(1): 147-57, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24390341

ABSTRACT

Clinical studies have established the important impact of atherosclerotic disease in Western societies. This disease is characterized by the accumulation of lipids and the migration of various cell types in the sub-endothelial space of blood vessels. As demonstrated by many studies, endothelial cells play an essential role in the development of this disease. The endothelium acts as a gatekeeper of blood vessel integrity and cardiovascular health status. For instance, the transfer of lipids via the transport of lipoproteins in the arterial intima is believed to be mediated by endothelial cells through a process termed transcytosis. In addition, lipoproteins that accumulate in the sub-endothelial space may also be modified, in a process that can direct the activation of endothelial cells. These steps are essential for the initiation of an atherosclerotic plaque and may be mediated, at least in part, by caveolae and their associated protein caveolin-1. In the present study, we evaluate the role of caveolin-1/caveolae in the regulation of these two steps in endothelial cells. Our data clearly demonstrate that caveolin-1 is involved in the regulation of lipoprotein transcytosis across endothelial cells and in the regulation of vascular inflammation.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/pathology , Caveolin 1/metabolism , Endothelial Cells/metabolism , Albumins/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Caveolae/metabolism , Down-Regulation , Endocytosis , Endothelial Cells/pathology , Gene Silencing , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Inflammation/pathology , Lipoproteins, LDL/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RNA, Small Interfering/metabolism , Signal Transduction
5.
Cell Cycle ; 11(23): 4402-13, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23172369

ABSTRACT

Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype, with intense mitochondrial staining specifically in BRCA1-deficient breast cancer cells. In summary, loss of BRCA1 function leads to hydrogen peroxide generation in both epithelial breast cancer cells and neighboring stromal fibroblasts, and promotes the onset of a reactive glycolytic stroma, with increased MCT4 and decreased Cav-1 expression. Importantly, these metabolic changes can be reversed by antioxidants, which potently induce cancer cell death. Thus, antioxidant therapy appears to be synthetically lethal with a BRCA1-deficiency in breast cancer cells and should be considered for future cancer prevention trials. In this regard, immunostaining with Cav-1 and MCT4 could be used as cost-effective biomarkers to monitor the response to antioxidant therapy.


Subject(s)
Antioxidants/pharmacology , BRCA1 Protein/metabolism , Glycolysis , Oxidative Stress , Tumor Microenvironment/drug effects , Acetylcysteine/pharmacology , Apoptosis/drug effects , BRCA1 Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Caveolin 1/metabolism , Cell Line , Coculture Techniques , Cyclic N-Oxides/pharmacology , Female , Humans , Hydrogen Peroxide/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Mutation , Spin Labels , Up-Regulation/drug effects
6.
Adv Exp Med Biol ; 729: 127-44, 2012.
Article in English | MEDLINE | ID: mdl-22411318

ABSTRACT

Atherosclerosis is a disease of the blood vessel characterized by the development of an arterial occlusion containing lipid and cellular deposits. Caveolae are 50-100 nm cell surface plasma membrane invaginations that are believed to play an important role in the regulation of cellular signaling and transport of molecules among others. These organelles are enriched in sphingolipids and cholesterol and are characterized by the presence of the protein caveolin-1. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis. The current literature suggests a rather complex role for caveolin-1 in this disease, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. In the present chapter, the various roles of caveolae and caveolin-1 in the development of atherosclerosis are examined.


Subject(s)
Atherosclerosis , Caveolae , Caveolin 1 , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Caveolae/metabolism , Caveolin 1/chemistry , Caveolin 1/deficiency , Caveolin 1/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Macrophages/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
7.
Cell Cycle ; 11(2): 253-63, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22234241

ABSTRACT

Aging drives large systemic reductions in oxidative mitochondrial function, shifting the entire body metabolically towards aerobic glycolysis, a.k.a, the Warburg effect. Aging is also one of the most significant risk factors for the development of human cancers, including breast tumors. How are these two findings connected? One simplistic idea is that cancer cells rebel against the aging process by increasing their capacity for oxidative mitochondrial metabolism (OXPHOS). Then, local and systemic aerobic glycolysis in the aging host would provide energy-rich mitochondrial fuels (such as L-lactate and ketones) to directly "fuel" tumor cell growth and metastasis. This would establish a type of parasite-host relationship or "two-compartment tumor metabolism", with glycolytic/oxidative metabolic-coupling. The cancer cells ("the seeds") would flourish in this nutrient-rich microenvironment ("the soil"), which has been fertilized by host aging. In this scenario, cancer cells are only trying to save themselves from the consequences of aging, by engineering a metabolic mutiny, through the amplification of mitochondrial metabolism. We discuss the recent findings of Drs. Ron DePinho (MD Anderson) and Craig Thomspson (Sloan-Kettering) that are also consistent with this new hypothesis, linking cancer progression with metabolic aging. Using data mining and bioinformatics approaches, we also provide key evidence of a role for PGC1a/NRF1 signaling in the pathogenesis of (1) two-compartment tumor metabolism, and (2) mitochondrial biogenesis in human breast cancer cells.


Subject(s)
Aging/pathology , Cell Transformation, Neoplastic , Energy Metabolism , Mitochondria/metabolism , Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Genes, Mitochondrial , Humans , Neoplasms/metabolism , Oxidative Stress , Oxygen Consumption
8.
Antioxid Redox Signal ; 16(11): 1264-84, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-21883043

ABSTRACT

SIGNIFICANCE: Here, we review certain recent advances in oxidative stress and tumor metabolism, which are related to understanding the contributions of the microenvironment in promoting tumor growth and metastasis. In the early 1920s, Otto Warburg, a Nobel Laureate, formulated a hypothesis to explain the "fundamental basis" of cancer, based on his observations that tumors displayed a metabolic shift toward glycolysis. In 1963, Christian de Duve, another Nobel Laureate, first coined the phrase auto-phagy, derived from the Greek words "auto" and "phagy," meaning "self" and "eating." RECENT ADVANCES: Now, we see that these two ideas (autophagy and aerobic glycolysis) physically converge in the tumor stroma. First, cancer cells secrete hydrogen peroxide. Then, as a consequence, oxidative stress in cancer-associated fibroblasts drives autophagy, mitophagy, and aerobic glycolysis. CRITICAL ISSUES: This "parasitic" metabolic coupling converts the stroma into a "factory" for the local production of recycled and high-energy nutrients (such as L-lactate)-to fuel oxidative mitochondrial metabolism in cancer cells. We believe that Warburg and de Duve would be pleased with this new two-compartment model for understanding tumor metabolism. It adds a novel stromal twist to two very well-established cancer paradigms: aerobic glycolysis and autophagy. FUTURE DIRECTIONS: Undoubtedly, these new metabolic models will foster the development of novel biomarkers, and corresponding therapies, to achieve the goal of personalized cancer medicine. Given the central role that oxidative stress plays in this process, new powerful antioxidants should be developed in the fight against cancer.


Subject(s)
Autophagy , Neoplasm Metastasis , Neoplasms/pathology , Oxidative Stress , Aerobiosis , Animals , Fibroblasts/pathology , Glycolysis , Humans , Neoplasms/metabolism
9.
Annu Rev Pathol ; 7: 423-67, 2012.
Article in English | MEDLINE | ID: mdl-22077552

ABSTRACT

Caveolins are a family of membrane-bound scaffolding proteins that compartmentalize and negatively regulate signal transduction. Recent studies have implicated a loss of caveolin-1 (Cav-1) expression in the pathogenesis of human cancers. Loss of Cav-1 expression in cancer-associated fibroblasts results in an activated tumor microenvironment, thereby driving early tumor recurrence, metastasis, and poor clinical outcome in breast and prostate cancers. We describe various paracrine signaling mechanism(s) by which the loss of stromal Cav-1 promotes tumor progression, including fibrosis, extracellular matrix remodeling, and the metabolic/catabolic reprogramming of cancer-associated fibroblast, to fuel the growth of adjacent tumor cells. It appears that oxidative stress is the root cause of initiation of the loss of stromal Cav-1 via autophagy, which provides further impetus for the use of antioxidants in anticancer therapy. Finally, we discuss the functional role of Cav-1 in epithelial cancer cells.


Subject(s)
Caveolin 1/metabolism , Neoplasms , Tumor Microenvironment , Animals , Autophagy , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Oxidative Stress , Paracrine Communication
10.
Cell Cycle ; 10(23): 4047-64, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22134189

ABSTRACT

We have recently proposed a new mechanism for explaining energy transfer in cancer metabolism. In this scenario, cancer cells behave as metabolic parasites, by extracting nutrients from normal host cells, such as fibroblasts, via the secretion of hydrogen peroxide as the initial trigger. Oxidative stress in the tumor microenvironment then leads to autophagy-driven catabolism, mitochondrial dys-function, and aerobic glycolysis. This, in turn, produces high-energy nutrients (such as L-lactate, ketones, and glutamine) that drive the anabolic growth of tumor cells, via oxidative mitochondrial metabolism. A logical prediction of this new "parasitic" cancer model is that tumor-associated fibroblasts should show evidence of mitochondrial dys-function (mitophagy and aerobic glycolysis). In contrast, epithelial cancer cells should increase their oxidative mitochondrial capacity. To further test this hypothesis, here we subjected frozen sections from human breast tumors to a staining procedure that only detects functional mitochondria. This method detects the in situ enzymatic activity of cytochrome C oxidase (COX), also known as Complex IV. Remarkably, cancer cells show an over-abundance of COX activity, while adjacent stromal cells remain essentially negative. Adjacent normal ductal epithelial cells also show little or no COX activity, relative to epithelial cancer cells. Thus, oxidative mitochondrial activity is selectively amplified in cancer cells. Although COX activity staining has never been applied to cancer tissues, it could now be used routinely to distinguish cancer cells from normal cells, and to establish negative margins during cancer surgery. Similar results were obtained with NADH activity staining, which measures Complex I activity, and succinate dehydrogenase (SDH) activity staining, which measures Complex II activity. COX and NADH activities were blocked by electron transport inhibitors, such as Metformin. This has mechanistic and clinical implications for using Metformin as an anti-cancer drug, both for cancer therapy and chemo-prevention. We also immuno-stained human breast cancers for a series of well-established protein biomarkers of metabolism. More specifically, we now show that cancer-associated fibroblasts over-express markers of autophagy (cathepsin B), mitophagy (BNIP3L), and aerobic glycolysis (MCT4). Conversely, epithelial cancer cells show the over-expression of a mitochondrial membrane marker (TOMM20), as well as key components of Complex IV (MT-CO1) and Complex II (SDH-B). We also validated our observations using a bioinformatics approach with data from > 2,000 breast cancer patients, which showed the transcriptional upregulation of mitochondrial oxidative phosphorylation (OXPHOS) in human breast tumors (p < 10(-20)), and a specific association with metastasis. Therefore, upregulation of OXPHOS in epithelial tumor cells is a common feature of human breast cancers. In summary, our data provide the first functional in vivo evidence that epithelial cancer cells perform enhanced mitochondrial oxidative phosphorylation, allowing them to produce high amounts of ATP. Thus, we believe that mitochondria are both the "powerhouse" and "Achilles' heel" of cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic , Metformin/pharmacology , Mitochondria/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor/drug effects , Computational Biology , Electron Transport Complex IV/metabolism , Energy Metabolism , Enzyme Activation , Enzyme Inhibitors/pharmacology , Female , Glycolysis , Humans , Malonates/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neoplasm Metastasis , Oxidative Phosphorylation , Oxidative Stress , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Tumor Microenvironment
11.
Cancer Biol Ther ; 12(10): 924-38, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22041887

ABSTRACT

Here, we show that tamoxifen resistance is induced by cancer-associated fibroblasts (CAFs). Coculture of estrogen receptor positive (ER+) MCF7 cells with fibroblasts induces tamoxifen and fulvestrant resistance with 4.4 and 2.5-fold reductions, respectively, in apoptosis compared with homotypic MCF7 cell cultures. Treatment of MCF7 cells cultured alone with high-energy mitochondrial "fuels" (L-lactate or ketone bodies) is sufficient to confer tamoxifen resistance, mimicking the effects of coculture with fibroblasts. To further demonstrate that epithelial cancer cell mitochondrial activity is the origin of tamoxifen resistance, we employed complementary pharmacological and genetic approaches. First, we studied the effects of two mitochondrial "poisons," namely metformin and arsenic trioxide (ATO), on fibroblast-induced tamoxifen resistance. We show here that treatment with metformin or ATO overcomes fibroblast-induced tamoxifen resistance in MCF7 cells. Treatment with the combination of tamoxifen plus metformin or ATO leads to increases in glucose uptake in MCF7 cells, reflecting metabolic uncoupling between epithelial cancer cells and fibroblasts. In coculture, tamoxifen induces the upregulation of TIGAR (TP53-induced glycolysis and apoptosis regulator), a p53 regulated gene that simultaneously inhibits glycolysis, autophagy and apoptosis and reduces ROS generation, thereby promoting oxidative mitochondrial metabolism. To genetically mimic the effects of coculture, we next recombinantly overexpressed TIGAR in MCF7 cells. Remarkably, TIGAR overexpression protects epithelial cancer cells from tamoxifen-induced apoptosis, providing genetic evidence that increased mitochondrial function confers tamoxifen resistance. Finally, CAFs also protect MCF7 cells against apoptosis induced by other anticancer agents, such as the topoisomerase inhibitor doxorubicin (adriamycin) and the PARP-1 inhibitor ABT-888. These results suggest that the tumor microenvironment may be a general mechanism for conferring drug resistance. In summary, we have discovered that mitochondrial activity in epithelial cancer cells drives tamoxifen resistance in breast cancer and that mitochondrial "poisons" are able to re-sensitize these cancer cells to tamoxifen. In this context, TIGAR may be a key "druggable" target for preventing drug resistance in cancer cells, as it protects cancer cells against the onset of stress-induced mitochondrial dys-function and aerobic glycolysis.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor Modulators/pharmacology , Mitochondria/drug effects , Tumor Microenvironment , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Arsenic Trioxide , Arsenicals/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Coculture Techniques , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estradiol/therapeutic use , Estrogen Receptor Modulators/therapeutic use , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fulvestrant , Humans , Hypoglycemic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Ketone Bodies/metabolism , Lactic Acid/metabolism , Metformin/pharmacology , Mitochondria/metabolism , Oxides/pharmacology , Phosphoric Monoester Hydrolases , Poly(ADP-ribose) Polymerase Inhibitors , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Tumor Microenvironment/drug effects
12.
Breast Cancer Res ; 13(4): 213, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21867571

ABSTRACT

Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caveolin 1/metabolism , Epithelial Cells/metabolism , Tumor Microenvironment , Ammonia/metabolism , Autophagy , Cell Death , Cell Hypoxia , DNA, Mitochondrial/metabolism , Glutamine/metabolism , Humans , Mitochondria/metabolism , Oxidative Stress , Predictive Value of Tests , Prognosis , Stromal Cells/metabolism , Stromal Cells/pathology
13.
Cell Cycle ; 10(15): 2440-9, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21734470

ABSTRACT

In 1889, Dr. Stephen Paget proposed the "seed and soil" hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary "fertilizer," by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other anti-oxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism.


Subject(s)
Breast Neoplasms/metabolism , Cellular Senescence , Hydrogen Peroxide/metabolism , Inflammation/metabolism , Neoplasm Metastasis , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Female , Fibroblasts/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactates/metabolism , NF-kappa B/metabolism , Oxidative Stress , Tumor Microenvironment
14.
Cell Cycle ; 10(15): 2504-20, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21778829

ABSTRACT

Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and  mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis, and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "reverse Warburg effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system, and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection).  Mitochondrial activity, glucose uptake, and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose, and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity, and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis.  Conversely, co-cultured cancer cells show significant increases in mitochondrial activity, and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress, and potently induces the death of cancer cells, likely via starvation.  Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Hydrogen Peroxide/metabolism , Apoptosis , Breast Neoplasms/diagnostic imaging , Catalase/pharmacology , Cell Line , Coculture Techniques , Female , Fibroblasts/metabolism , Fluorescent Dyes/chemistry , Glucose Transporter Type 1/metabolism , Glycolysis , Humans , Mitochondria/metabolism , Oxidative Stress , Positron-Emission Tomography , Reactive Oxygen Species/metabolism , Tumor Microenvironment
15.
Cell Cycle ; 10(15): 2521-8, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21768775

ABSTRACT

Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, "fueling" oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream of to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the "root cause" of cancer, but rather it may provide the necessary clues to preventing chemo-resistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for overcoming drug resistance could be applicable to many different types of cancer.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line , Coculture Techniques , Dasatinib , Female , Fibroblasts/metabolism , Glycolysis , Humans , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Telomerase/metabolism , Thiazoles/pharmacology , Thiazoles/therapeutic use
16.
Cell Cycle ; 10(13): 2059-63, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21654190

ABSTRACT

Cancer is thought to be a disease associated with aging. Interestingly, normal aging is driven by the production of ROS and mitochondrial oxidative stress, resulting in the cumulative accumulation of DNA damage. Here, we discuss how ROS signaling, NFκB- and HIF1-activation in the tumor microenvironment induces a form of "accelerated aging," which leads to stromal inflammation and changes in cancer cell metabolism. Thus, we present a unified model where aging (ROS), inflammation (NFκB) and cancer metabolism (HIF1), act as co-conspirators to drive autophagy ("self-eating") in the tumor stroma. Then, autophagy in the tumor stroma provides high-energy "fuel" and the necessary chemical building blocks, for accelerated tumor growth and metastasis. Stromal ROS production acts as a "mutagenic motor" and allows cancer cells to buffer-at a distance-exactly how much of a mutagenic stimulus they receive, further driving tumor cell selection and evolution. Surviving cancer cells would be selected for the ability to induce ROS more effectively in stromal fibroblasts, so they could extract more nutrients from the stroma via autophagy. If lethal cancer is a disease of "accelerated host aging" in the tumor stroma, then cancer patients may benefit from therapy with powerful antioxidants. Antioxidant therapy should block the resulting DNA damage, and halt autophagy in the tumor stroma, effectively "cutting off the fuel supply" for cancer cells. These findings have important new implications for personalized cancer medicine, as they link aging, inflammation and cancer metabolism with novel strategies for more effective cancer diagnostics and therapeutics.


Subject(s)
Aging/physiology , Inflammation/metabolism , Neoplasms/metabolism , Precision Medicine , Tumor Microenvironment , Animals , Gene Expression Profiling , Humans , Inflammation/physiopathology , Neoplasms/pathology , Neoplasms/physiopathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction/physiology
17.
Cell Cycle ; 10(11): 1772-83, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21558814

ABSTRACT

Recently, we proposed a new mechanism for understanding the Warburg effect in cancer metabolism. In this new paradigm, cancer-associated fibroblasts undergo aerobic glycolysis, and extrude lactate to "feed" adjacent cancer cells, which then drives mitochondrial biogenesis and oxidative mitochondrial metabolism in cancer cells. Thus, there is vectorial transport of energy-rich substrates from the fibroblastic tumor stroma to anabolic cancer cells. A prediction of this hypothesis is that cancer-associated fibroblasts should express MCT4, a mono-carboxylate transporter that has been implicated in lactate efflux from glycolytic muscle fibers and astrocytes in the brain. To address this issue, we co-cultured MCF7 breast cancer cells with normal fibroblasts. Interestingly, our results directly show that breast cancer cells specifically induce the expression of MCT4 in cancer-associated fibroblasts; MCF7 cells alone and fibroblasts alone, both failed to express MCT4. We also show that the expression of MCT4 in cancer-associated fibroblasts is due to oxidative stress, and can be prevented by pre-treatment with the anti-oxidant N-acetyl-cysteine. In contrast to our results with MCT4, we see that MCT1, a transporter involved in lactate uptake, is specifically upregulated in MCF7 breast cancer cells when co-cultured with fibroblasts. Virtually identical results were also obtained with primary human breast cancer samples. In human breast cancers, MCT4 selectively labels the tumor stroma, e.g., the cancer-associated fibroblast compartment. Conversely, MCT1 was selectively expressed in the epithelial cancer cells within the same tumors. Functionally, we show that overexpression of MCT4 in fibroblasts protects both MCF7 cancer cells and fibroblasts against cell death, under co-culture conditions. Thus, we provide the first evidence for the existence of a stromal-epithelial lactate shuttle in human tumors, analogous to the lactate shuttles that are essential for the normal physiological function of muscle tissue and brain. These data are consistent with the "reverse Warburg effect," which states that cancer-associated fibroblasts undergo aerobic glycolysis, thereby producing lactate, which is utilized as a metabolic substrate by adjacent cancer cells. In this model, "energy transfer" or "metabolic-coupling" between the tumor stroma and epithelial cancer cells "fuels" tumor growth and metastasis, via oxidative mitochondrial metabolism in anabolic cancer cells. Most importantly, our current findings provide a new rationale and novel strategy for anti-cancer therapies, by employing MCT inhibitors.


Subject(s)
Breast Neoplasms/metabolism , Fibroblasts/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Oxidative Stress , Breast Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques , Epithelial Cells , Female , Humans , Lactates/metabolism , Stromal Cells
18.
Cell Cycle ; 10(11): 1794-809, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21521946

ABSTRACT

Breast cancer progression and metastasis are driven by complex and reciprocal interactions, between epithelial cancer cells and their surrounding stromal microenvironment. We have previously shown that a loss of stromal Cav-1 expression is associated with an increased risk of early tumor recurrence, metastasis and decreased overall survival. To identify and characterize the signaling pathways that are activated in Cav-1 negative tumor stroma, we performed gene expression profiling using laser microdissected breast cancer-associated stroma. Tumor stroma was laser capture microdissected from 4 cases showing high stromal Cav-1 expression and 7 cases with loss of stromal Cav-1. Briefly, we identified 238 gene transcripts that were upregulated and 232 gene transcripts that were downregulated in the stroma of tumors showing a loss of Cav-1 expression (p ≤ 0.01 and fold-change ≥ 1.5). Gene set enrichment analysis (GSEA) revealed "stemness," inflammation, DNA damage, aging, oxidative stress, hypoxia, autophagy and mitochondrial dysfunction in the tumor stroma of patients lacking stromal Cav-1. Our findings are consistent with the recently proposed "Reverse Warburg Effect" and the "Autophagic Tumor Stroma Model of Cancer Metabolism." In these two complementary models, cancer cells induce oxidative stress in adjacent stromal cells, which then forces these stromal fibroblasts to undergo autophagy/mitophagy and aerobic glycolysis. This, in turn, produces recycled nutrients (lactate, ketones and glutamine) to feed anabolic cancer cells, which are undergoing oxidative mitochondrial metabolism. Our results are also consistent with previous biomarker studies showing that the increased expression of known autophagy markers (such as ATG16L and the cathepsins) in the tumor stroma is specifically associated with metastatic tumor progression and/or poor clinical outcome.


Subject(s)
Breast Neoplasms/metabolism , Caveolin 1/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Biomarkers , Breast Neoplasms/pathology , Caveolin 1/deficiency , Caveolin 1/physiology , Cell Communication , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Humans , Oxidative Stress
20.
Cell Cycle ; 10(8): 1271-86, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21512313

ABSTRACT

Previously, we showed that high-energy metabolites (lactate and ketones) "fuel" tumor growth and experimental metastasis in an in vivo xenograft model, most likely by driving oxidative mitochondrial metabolism in breast cancer cells. To mechanistically understand how these metabolites affect tumor cell behavior, here we used genome-wide transcriptional profiling. Briefly, human breast cancer cells (MCF7) were cultured with lactate or ketones, and then subjected to transcriptional analysis (exon-array). Interestingly, our results show that treatment with these high-energy metabolites increases the transcriptional expression of gene profiles normally associated with "stemness," including genes upregulated in embryonic stem (ES) cells. Similarly, we observe that lactate and ketones promote the growth of bonafide ES cells, providing functional validation. The lactate- and ketone-induced "gene signatures" were able to predict poor clinical outcome (including recurrence and metastasis) in a cohort of human breast cancer patients. Taken together, our results are consistent with the idea that lactate and ketone utilization in cancer cells promotes the "cancer stem cell" phenotype, resulting in significant decreases in patient survival. One possible mechanism by which these high-energy metabolites might induce stemness is by increasing the pool of Acetyl-CoA, leading to increased histone acetylation, and elevated gene expression. Thus, our results mechanistically imply that clinical outcome in breast cancer could simply be determined by epigenetics and energy metabolism, rather than by the accumulation of specific "classical" gene mutations. We also suggest that high-risk cancer patients (identified by the lactate/ketone gene signatures) could be treated with new therapeutics that target oxidative mitochondrial metabolism, such as the anti-oxidant and "mitochondrial poison" metformin. Finally, we propose that this new approach to personalized cancer medicine be termed "Metabolo-Genomics," which incorporates features of both 1) cell metabolism and 2) gene transcriptional profiling. Importantly, this powerful new approach directly links cancer cell metabolism with clinical outcome, and new therapeutic strategies for inhibiting the TCA cycle and mitochondrial oxidative phosphorylation in cancer cells.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Ketones/metabolism , Lactic Acid/metabolism , Stem Cells/metabolism , Acetyl Coenzyme A/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Citric Acid Cycle , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Genomics , Glycolysis , Humans , Metabolomics , Mitochondria/metabolism , Neoplasm Metastasis , Oxidative Phosphorylation , Precision Medicine/methods , Recurrence , Stem Cells/pathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...