Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Chembiochem ; : e202400514, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004943

ABSTRACT

The primary objective of this work is to develop a sustainable biocatalytic transesterification process for low-grade oils, aligning with EU green technology requirements for the shift to second generation biodiesel. Thus, we investigated the immobilization and subsequent application of the lipase Biolipasa-R on transesterification processes to produce fatty acid methyl esters (FAMEs) from both a sunflower oil and an acid oil which is a bioproduct of the biodiesel industry. The lipase was immobilized on biomaterials, such as diatomaceous earth, with a yield of 60%, and commercial carriers such as methacrylic resins with a yield of 100%. The enzyme demonstrated superior activity when immobilized on diatomaceous earth, particularly in reactions involving the acid oil, outperforming the benchmark enzyme Novozym® 435 (95.1% and 35% conversion respectively). This work highlights the potential of Biolipasa-R as a cost-effective and efficient biocatalyst for biodiesel production and emphasizes the environmental benefits of utilizing industrial byproducts and eco-friendly immobilization techniques. The findings suggest that Biolipasa-R is a promising candidate for industrial applications in biodiesel production, offering a sustainable solution for waste management and energy generation.

2.
Enzyme Microb Technol ; 180: 110486, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39038418

ABSTRACT

Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.

3.
Article in English | MEDLINE | ID: mdl-38696097

ABSTRACT

This study describes the enzymatic production of second-generation biodiesel using low-quality acid oil as a substrate. Biolipasa-R, a commercially available and low-cost lipase, was employed for enzymatic transesterification. Response surface methodology was applied to optimize the enzymatic transesterification process. The optimal conditions for biodiesel production, which comprised 42% lipase concentration (per weight of oil), 32% water content (per weight of oil), a methanol to oil molar ratio of 3:1, pH 7.0 and reaction temperature 30°C, resulted in the highest fatty acid methyl ester (FAME) content (71.3%). Subsequently, the synergistic effect of two lipases with different regioselectivities under the optimum transesterification conditions was studied, aiming at the enhancement of process efficiency. The transesterification efficiency of immobilized Biolipasa-R was determined and compared to that of Biolipasa-R in its free form. The results revealed a good performance on FAME content (66.5%), while the recycling of immobilized lipase resulted in a decrease in transesterification efficiency after three consecutive uses.

4.
Methods Mol Biol ; 2487: 361-375, 2022.
Article in English | MEDLINE | ID: mdl-35687247

ABSTRACT

Halides are substrates and products of a number of biotechnologically important enzymes like dehalogenases, halide methyltransferases, and halogenases. Therefore, the determination of halide concentrations in samples is important. The classical methods based on mercuric thiocyanate are very dangerous, produce hazardous waste, and do not discriminate between chloride, bromide, and iodide. In this chapter, we describe a detailed protocol for the determination of halide concentrations based on the haloperoxidase-catalyzed oxidation of halides. The resulting hypohalous acids are detected using commercially available colorimetric or fluorimetric probes. The biocatalytic nature of the assays allows them to be implemented in one-pot cascade reactions with halide-generating enzymes. Since chloride is ubiquitous in biological systems, we also describe convenient photometric assays for the selective detection of bromide and iodide in the presence of chloride, obviating the need for laborious dialyses to obtain halide-free enzymes and reagents.


Subject(s)
Bromides , Iodides , Chlorides , Halogens , Renal Dialysis
5.
Chembiochem ; 23(13): e202200254, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35579388

ABSTRACT

Olive mill wastewater (OMWW) is produced annually during olive oil extraction and contains most of the health-promoting 3-hydroxytyrosol of the olive fruit. To facilitate its recovery, enzymatic transesterification of hydroxytyrosol (HT) was directly performed in an aqueous system in the presence of ethyl acetate, yielding a 3-hydroxytyrosol acetate rich extract. For this, the promiscuous acyltransferase from Pyrobaculum calidifontis VA1 (PestE) was engineered by rational design. The best mutant for the acetylation of hydroxytyrosol (PestE_I208A_L209F_N288A) was immobilized on EziG2 beads, resulting in hydroxytyrosol conversions between 82 and 89 % in one hour, for at least ten reaction cycles in a buffered hydroxytyrosol solution. Due to inhibition by other phenols in OMWW the conversions of hydroxytyrosol from this source were between 51 and 62 %. In a preparative scale reaction, 13.8 mg (57 %) of 3-hydroxytyrosol acetate was extracted from 60 mL OMWW.


Subject(s)
Olea , Acetates , Acyltransferases , Antioxidants/pharmacology , Hydrolases , Olive Oil , Phenylethyl Alcohol/analogs & derivatives , Wastewater
6.
Chem Commun (Camb) ; 57(96): 12948-12951, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34806715

ABSTRACT

Despite the plethora of information on (S)-selective amine transaminases, the (R)-selective ones are still not well-studied; only a few structures are known to date, and their substrate scope is limited, apart from a few stellar works in the field. Herein, the structure of Luminiphilus syltensis (R)-selective amine transaminase is elucidated to facilitate engineering towards variants active on bulkier substrates. The V37A variant exhibited increased activity towards 1-phenylpropylamine and to activity against 1-butylamine. In contrast, the S248 and T249 positions, located on the ß-turn in the P-pocket, seem crucial for maintaining the activity of the enzyme.


Subject(s)
Amines/metabolism , Gammaproteobacteria/enzymology , Protein Engineering , Transaminases/metabolism , Amines/chemistry , Models, Molecular , Substrate Specificity , Transaminases/chemistry
7.
Chembiochem ; 22(16): 2584-2590, 2021 08 17.
Article in English | MEDLINE | ID: mdl-33890381

ABSTRACT

Halide methyltransferases (HMTs) enable the enzymatic synthesis of S-adenosyl-l-methionine (SAM) from S-adenosyl-l-homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo- and regioselective biocatalytic alkylations.


Subject(s)
Methyltransferases
8.
Angew Chem Int Ed Engl ; 60(3): 1524-1527, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33108827

ABSTRACT

Biocatalytic alkylations are important reactions to obtain chemo-, regio- and stereoselectively alkylated compounds. This can be achieved using S-adenosyl-l-methionine (SAM)-dependent methyltransferases and SAM analogs. It was recently shown that a halide methyltransferase (HMT) from Chloracidobacterium thermophilum can synthesize SAM from SAH and methyl iodide. We developed an iodide-based assay for the directed evolution of an HMT from Arabidopsis thaliana and used it to identify a V140T variant that can also accept ethyl-, propyl-, and allyl iodide to produce the corresponding SAM analogs (90, 50, and 70 % conversion of 15 mg SAH). The V140T AtHMT was used in one-pot cascades with O-methyltransferases (IeOMT or COMT) to achieve the regioselective ethylation of luteolin and allylation of 3,4-dihydroxybenzaldehyde. While a cascade for the propylation of 3,4-dihydroxybenzaldehyde gave low conversion, the propyl-SAH intermediate could be confirmed by NMR spectroscopy.


Subject(s)
Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Biocatalysis , Humans , Protein Engineering
9.
Bioorg Chem ; 104: 104214, 2020 11.
Article in English | MEDLINE | ID: mdl-32927128

ABSTRACT

In this paper, we study the activity and specificity of EstDZ2, a new thermostable carboxyl esterase of unknown function, which was isolated from a metagenome library from a Russian hot spring. The biocatalytic reaction employing EstDZ2 proved to be an efficient method for the hydrolysis of aryl p-, o- or m-substituted esters of butyric acid and esters of secondary alcohols. Docking studies revealed structural features of the enzyme that led to activity differences among the different substrates.


Subject(s)
Esterases/metabolism , Temperature , Alcohols/chemistry , Alcohols/metabolism , Biocatalysis , Butyric Acid/chemistry , Butyric Acid/metabolism , Esterases/chemistry , Esterases/isolation & purification , Gene Library , Hot Springs , Hydrolysis , Molecular Docking Simulation , Molecular Structure
10.
Enzyme Microb Technol ; 133: 109467, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31874689

ABSTRACT

The specific activity and enantioselectivity of immobilized cutinases from Aspergillus oryzae (AoC) and Humicola insolens (HiC) were compared with those of lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Lipase B from Candida antarctica (CALB) for menthol and its analogs that include isopulegol, trans-2-tert-butylcyclohexanol (2TBC), and dihydrocarveol (DHC). Common features of these alcohols are two bulky substituents: a cyclohexyl ring and an alkyl substituent. Dissimilarities are that the alkyl group reside at different positions or have dissimilar structures. The aim was to develop an understanding at a molecular level of similarities and differences in the catalytic behavior of the selected cutinases and lipases as a function of substrate structural elements. The experimental results reflect the (-)-enantioselectivity for AoC, HiC, TLL, and RML, while CALB is only active on DHC with (+)-enantioselectivity. In most cases, AoC has the highest activity while HiC is significantly more active than other enzymes on 2TBC. The E values of AoC, HiC, TLL, and RML for menthol are 27.8, 16.5, 155, and 125, respectively. HiC has a higher activity (>10-fold) on (-)-2TBC than AoC while they exhibit similar activities on menthol. Docking results reveal that the bulky group adjacent to the hydroxyl group determines the enantioselectivity of AoC, HiC, TLL, and RML. Amino acid residues that dominate the enantioselectivity of these enzymes are AoC's Phe195 aromatic ring; HiC's hydrophobic Leu 174 and Ile 169 groups; TLL's ring structures of Trp89, His258 and Tyr21; and Trp88 for RML. Results of this study highlight that cutinases can provide important advantages relative to lipases for enantioselective transformation, most notably with bulky and sterically hindered substrates.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Enzymes, Immobilized/metabolism , Fungal Proteins/metabolism , Lipase/metabolism , Menthol/analogs & derivatives , Catalysis , Fungi/enzymology , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Docking Simulation
11.
Org Biomol Chem ; 17(7): 1634-1642, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30394478

ABSTRACT

Amine transaminases (ATAs) propose an appealing alternative to transition metal catalysts as they can provide chiral amines of high purity from pro-chiral compounds by asymmetric synthesis. Industrial interest on ATAs arises from the fact that chiral amines are present in a wide spectrum of pharmaceutical and other high value-added chiral compounds and building blocks. Despite their potential as useful synthetic tools, several drawbacks such as challenges associated with the thermodynamic equilibrium can still impede their utilization. Several methods have been developed to displace the equilibrium, such as the use of alanine as an amine donor and the subsequent removal of pyruvate with a two-enzyme system, or the use of o-xylylene diamine. To date, the preferred amine donor remains isopropylamine (IPA), as the produced acetone can be removed easily under low pressure or slight heating, without complicating the process with other enzymes. Despite its small size, IPA is not widely accepted from wild-type ATAs, and this fact compromises its wide applicability. Herein, we index the reported biocatalytic aminations with IPA, comparing the sequences, while we discuss significant parameters of the process, such as the effect of temperature and pH, as well as the protein engineering and process development advances in the field. This information is expected to provide an insight for potential designs of tailor-made ATAs and IPA processes.


Subject(s)
Biocatalysis , Propylamines/chemistry , Transaminases/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Protein Engineering , Transaminases/chemistry , Transaminases/genetics
12.
Int J Biol Macromol ; 120(Pt A): 1247-1255, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30063933

ABSTRACT

Esterases and lipases from extremophiles have attracted great attention due to their unique characteristics and wide applications. In the present study, an open reading frame (ORF) encoding a novel cold active esterase (EstN7) from Bacillus cohnii strain N1 was cloned and expressed in Escherichia coli. The full-length esterase gene encoding a protein of 320 amino acids with estimated molecular weight of 37.0 kDa. Amino acid sequence analysis revealed that the EstN7 belongs to family IV lipases with a characteristic penta-peptide motif (GXSXG), the catalytic triad Ser, Asp, His and the conserved HGGG motif of the family IV. The recombinant enzyme was purified to apparent homogeneity using nickel-affinity chromatography with a purification fold of 5 and recovery 94.5%. The specific activity of the purified enzyme was 336.89 U/mg. The recombinant EstN7 showed optimal activity at 5 °C moreover, EstN7 displayed full robust stability in the presence of wide range of organic solvents. The purified enzyme had Km and Vmax of 45 ±â€¯0.019 µM and 1113 µmol min-1 mg-1, respectively on p-NP-acetate. These promising characteristics of the recombinant EstN7 would underpin its possible usage with high potential in the synthesis of fragile compounds in pharmaceutical industries.


Subject(s)
Bacillus/enzymology , Esterases/chemistry , Recombinant Proteins/chemistry , Cloning, Molecular , Cold Temperature , Enzyme Stability , Escherichia coli/genetics , Esterases/genetics , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Sequence Alignment , Substrate Specificity
13.
Front Microbiol ; 9: 505, 2018.
Article in English | MEDLINE | ID: mdl-29619018

ABSTRACT

S-adenosyl-L-homocysteine (SAH) hydrolases (SAHases) are involved in the regulation of methylation reactions in many organisms and are thus crucial for numerous cellular functions. Consequently, their dysregulation is associated with severe health problems. The SAHase-catalyzed reaction is reversible and both directions depend on the redox activity of nicotinamide adenine dinucleotide (NAD+) as a cofactor. Therefore, nicotinamide cofactor biomimetics (NCB) are a promising tool to modulate SAHase activity. In the present in vitro study, we investigated 10 synthetic truncated NAD+ analogs against a SAHase from the root-nodulating bacterium Bradyrhizobium elkanii. Among this set of analogs, one was identified to inhibit the SAHase in both directions. Isothermal titration calorimetry (ITC) and crystallography experiments suggest that the inhibitory effect is not mediated by a direct interaction with the protein. Neither the apo-enzyme (i.e., deprived of the natural cofactor), nor the holo-enzyme (i.e., in the NAD+-bound state) were found to bind the inhibitor. Yet, enzyme kinetics point to a non-competitive inhibition mechanism, where the inhibitor acts on both, the enzyme and enzyme-SAH complex. Based on our experimental results, we hypothesize that the NCB inhibits the enzyme via oxidation of the enzyme-bound NADH, which may be accessible through an open molecular gate, leaving the enzyme stalled in a configuration with oxidized cofactor, where the reaction intermediate can be neither converted nor released. Since the reaction mechanism of SAHase is quite uncommon, this kind of inhibition could be a viable pharmacological route, with a low risk of off-target effects. The NCB presented in this work could be used as a template for the development of more potent SAHase inhibitors.

14.
Biochem J ; 474(14): 2389-2403, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28583991

ABSTRACT

Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Models, Molecular , Amino Acid Substitution , Arginine/chemistry , Binding Sites , Computational Biology , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/chemistry , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Cyclic GMP/chemistry , Expert Systems , Humans , Kinetics , Ligands , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Threonine/chemistry
15.
N Biotechnol ; 39(Pt A): 11-17, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28461153

ABSTRACT

S-Adenosyl-l-homocysteine hydrolases (SAHases) are important metabolic enzymes and their dysregulation is associated with some severe diseases. In vivo they catalyze the hydrolysis of S-adenosyl-l-homocysteine (SAH), the by-product of methylation reactions in various organisms. SAH is a potent inhibitor of methyltransferases, thus its removal from the equilibrium is an important requirement for methylation reactions. SAH hydrolysis is also the first step in the cellular regeneration process of the methyl donor S-adenosyl-l-methionine (SAM). However, in vitro the equilibrium lies towards the synthetic direction. To enable characterization of SAHases in the physiologically relevant direction, we have developed a coupled photometric assay that shifts the equilibrium towards hydrolysis by removing the product adenosine, using a high affinity adenosine kinase (AK). This converts adenosine to AMP and thereby forms equimolar amounts of ADP, which is phosphorylated by a pyruvate kinase (PK), in turn releasing pyruvate. The readout of the assay is the consumption of NADH during the lactate dehydrogenase (LDH) catalyzed reduction of pyruvate to lactic acid. The applicability of the assay is showcased for the determination of the kinetic constants of an SAHase from Bradyrhizobium elkanii (KM,SAH 41±5µM, vmax,SAH 25±1µM/min with 0.13mg/mL enzyme). This assay is a valuable tool for in vitro characterization of SAHases with biotechnological potential, and for monitoring SAHase activity in diagnostics.


Subject(s)
Adenosylhomocysteinase/metabolism , Photometry/methods , S-Adenosylhomocysteine/metabolism , Adenosine Monophosphate/pharmacology , Adenosylhomocysteinase/isolation & purification , Bradyrhizobium/enzymology , Homocysteine/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , S-Adenosylhomocysteine/chemistry , Temperature
16.
Chembiochem ; 18(11): 1022-1026, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28334484

ABSTRACT

Amine transaminase (ATA) catalyzing stereoselective amination of prochiral ketones is an attractive alternative to transition metal catalysis. As wild-type ATAs do not accept sterically hindered ketones, efforts to widen the substrate scope to more challenging targets are of general interest. We recently designed ATAs to accept aromatic and thus planar bulky amines, with a sequence-based motif that supports the identification of novel enzymes. However, these variants were not active against 2,2-dimethyl-1-phenyl-propan-1-one, which carries a bulky tert-butyl substituent adjacent to the carbonyl function. Here, we report a solution for this type of substrate. The evolved ATAs perform asymmetric synthesis of the respective R amine with high conversions by using either alanine or isopropylamine as amine donor.


Subject(s)
Amines , Directed Molecular Evolution , Protein Engineering/methods , Transaminases/genetics , Amination , Amino Acid Substitution , Biocatalysis , Computer Simulation , Substrate Specificity
17.
Appl Microbiol Biotechnol ; 101(4): 1499-1507, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27787586

ABSTRACT

Pyridoxal-5'-phosphate (PLP)-dependent enzymes are ubiquitous in nature and catalyze a variety of important metabolic reactions. The fold-type III PLP-dependent enzyme family is primarily comprised of decarboxylases and alanine racemases. In the development of a multiple structural alignment database (3DM) for the enzyme family, a large subset of 5666 uncharacterized proteins with high structural, but low sequence similarity to alanine racemase and decarboxylases was found. Compared to these two classes of enzymes, the protein sequences being the object of this study completely lack the C-terminal domain, which has been reported important for the formation of the dimer interface in other fold-type III enzymes. The 5666 sequences cluster around four protein templates, which also share little sequence identity to each other. In this work, these four template proteins were solubly expressed in Escherichia coli, purified, and their substrate profiles were evaluated by HPLC analysis for racemase activity using a broader range of amino acids. They were found active only against alanine or serine, where they exhibited Michaelis constants within the range of typical bacterial alanine racemases, but with significantly lower turnover numbers. As the already described racemases were proposed to be active and appeared to be monomers as judged from their crystal structures, we also investigated this aspect for the four new enzymes. Here, size exclusion chromatography indicated the presence of oligomeric states of the enzymes and a native-PAGE in-gel assay showed that the racemase activity was present only in an oligomeric state but not as monomer. This suggests the likelihood of a different behavior of these enzymes in solution compared to the one observed in crystalline form.


Subject(s)
Computational Biology/methods , Pyridoxal Phosphate/metabolism , Racemases and Epimerases/metabolism , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Protein Conformation , Racemases and Epimerases/chemistry
18.
Org Biomol Chem ; 14(43): 10249-10254, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27739550

ABSTRACT

Application of amine transaminases (ATAs) for stereoselective amination of prochiral ketones represents an environmentally benign and economically attractive alternative to transition metal catalyzed asymmetric synthesis. However, the restrictive substrate scope has limited the conversion typically to non-sterically demanding scaffolds. Recently, we reported on the identification and design of fold class I ATAs that effect a highly selective asymmetric synthesis of a set of chiral aromatic bulky amines from the corresponding ketone precursors in high yield. However, for the specific amine synthetic approach extension targeted here, the selective formation of an exo- vs. endo-isomer, these biocatalysts required additional refinement. The chosen substrate (exo-3-amino-8-aza-bicyclo[3.2.1]oct-8-yl-phenyl-methanone), apart from its pharmacological relevance, is a demanding target for ATAs as the bridged bicyclic ring provides substantial steric challenges. Protein engineering combining rational design and directed evolution enabled the identification of an ATA variant which catalyzes the specific synthesis of the target exo-amine with >99.5% selectivity.


Subject(s)
Amines/chemistry , Amines/chemical synthesis , Protein Engineering , Transaminases/genetics , Transaminases/metabolism , Biocatalysis , Catalytic Domain , Chemistry Techniques, Synthetic , Ketones/chemistry , Models, Molecular , Rhodobacteraceae/enzymology , Stereoisomerism , Substrate Specificity , Transaminases/chemistry
19.
Nat Chem ; 8(11): 1076-1082, 2016 11.
Article in English | MEDLINE | ID: mdl-27768108

ABSTRACT

The use of transaminases to access pharmaceutically relevant chiral amines is an attractive alternative to transition-metal-catalysed asymmetric chemical synthesis. However, one major challenge is their limited substrate scope. Here we report the creation of highly active and stereoselective transaminases starting from fold class I. The transaminases were developed by extensive protein engineering followed by optimization of the identified motif. The resulting enzymes exhibited up to 8,900-fold higher activity than the starting scaffold and are highly stereoselective (up to >99.9% enantiomeric excess) in the asymmetric synthesis of a set of chiral amines bearing bulky substituents. These enzymes should therefore be suitable for use in the synthesis of a wide array of potential intermediates for pharmaceuticals. We also show that the motif can be engineered into other protein scaffolds with sequence identities as low as 70%, and as such should have a broad impact in the field of biocatalytic synthesis and enzyme engineering.


Subject(s)
Amines/metabolism , Transaminases/metabolism , Amines/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Kinetics , Mutagenesis, Site-Directed , Protein Engineering , Quinones/chemistry , Quinones/metabolism , Stereoisomerism , Substrate Specificity , Transaminases/chemistry , Transaminases/genetics
20.
Appl Microbiol Biotechnol ; 100(4): 1945-1953, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26671615

ABSTRACT

As both research on and application of proteins are rarely focused on the resistance towards nonspecific proteases, this property remained widely unnoticed, in particular in terms of protein purification and related fields. In the present study, diverse aspects of protease-mediated protein purification (PMPP) were explored on the basis of the complementary proteases trypsin and proteinase K as well as the model proteins green fluorescent protein (GFP) from Aequorea victoria, lipase A from Candida antarctica (CAL-A), a transaminase from Aspergillus fumigatus (AspFum), quorum quenching lactonase AiiA from Bacillus sp., and an alanine dehydrogenase from Thermus thermophilus (AlaDH). While GFP and AiiA were already known to be protease resistant, the thermostable enzymes CAL-A, AspFum, and AlaDH were selected due to the documented correlation between thermostability and protease resistance. As proof of principle for PMPP, recombinant GFP remained unaffected whereas most Escherichia coli (E. coli) host proteins were degraded by trypsin. PMPP was highly advantageous compared to the widely used heat-mediated purification of commercial CAL-A. The resistance of AspFum towards trypsin was improved by rational protein design introducing point mutation R20Q. Trypsin also served as economical and efficient substitute for site-specific endopeptidases for the removal of a His-tag fused to AiiA. Moreover, proteolysis of host enzymes with interfering properties led to a strongly improved sensitivity and accuracy of the NADH assay in E. coli cell lysate for AlaDH activity measurements. Thus, PMPP is an attractive alternative to common protein purification methods and facilitates also enzyme characterization in cell lysate.


Subject(s)
Biotechnology/methods , Peptide Hydrolases/metabolism , Proteins/isolation & purification , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...