Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geod ; 93(11): 2263-2273, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31920223

ABSTRACT

NASA maintains and operates a global network of Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Global Navigation Satellite System (GNSS) ground stations as part of the NASA Space Geodesy Program. The NASA Space Geodesy Network (NSGN) provides the geodetic products that support Earth observations and the related science requirements as outlined by the US National Research Council (NRC 2010, 2018). The Global Geodetic Observing System (GGOS) and the NRC have set an ambitious goal of improving the Terrestrial Reference Frame (TRF) to have an accuracy of 1 millimeter and stability of 0.1 millimeters per year, an order of magnitude beyond current capabilities. NASA and its partners within GGOS are addressing this challenge by planning and implementing modern geodetic stations co-located at existing and new sites around the world. In 2013, NASA demonstrated the performance of its next-generation systems at the prototype next-generation core site at NASA's Goddard Geophysical and Astronomical Observatory in Greenbelt, Maryland. Implementation of a new broadband VLBI station in Hawaii was completed in 2016. NASA is currently implementing new VLBI and SLR stations in Texas and is planning the replacement of its other aging domestic and international legacy stations. In this article, we describe critical gaps in the current global network and discuss how the new NSGN will expand the global geodetic coverage and ultimately improve the geodetic products. We also describe the characteristics of a modern NSGN site and the capabilities of the next-generation NASA SLR and VLBI systems. Finally, we outline the plans for efficiently operating the NSGN by centralizing and automating the operations of the new geodetic stations.

2.
Nature ; 431(7011): 958-60, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15496915

ABSTRACT

An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.

SELECTION OF CITATIONS
SEARCH DETAIL
...