Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-462074

ABSTRACT

Human monoclonal antibody (mAb) treatments are promising for COVID-19 prevention, post-exposure prophylaxis, or therapy. However, the titer of neutralizing antibodies required for protection against SARS-CoV-2 infection remains poorly characterized. We previously described two potently neutralizing mAbs COV2-2130 and COV2-2381 targeting non-overlapping epitopes on the receptor-binding domain of SARS-CoV-2 spike protein. Here, we engineered the Fc-region of these mAbs with mutations to extend their persistence in humans and reduce interactions with Fc gamma receptors. Passive transfer of individual or combinations of the two antibodies (designated ADM03820) given prophylactically by intravenous or intramuscular route conferred virological protection in a non-human primate (NHP) model of SARS-CoV-2 infection, and ADM03820 potently neutralized SARS-CoV-2 variants of concern in vitro. We defined 6,000 as a protective serum neutralizing antibody titer in NHPs against infection for passively transferred human mAbs that acted by direct viral neutralization, which corresponded to a concentration of 20 g/mL of circulating mAb.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-442326

ABSTRACT

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-441501

ABSTRACT

With the emergence of SARS-CoV-2 variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here we developed a panel of neutralizing anti-SARS-CoV-2 mAbs that bind the receptor binding domain of the spike protein at distinct epitopes and block virus attachment to cells and its receptor, human angiotensin converting enzyme-2 (hACE2). While several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by historical SARS-CoV-2 strains, others induced escape variants in vivo and lost activity against emerging strains. We identified one mAb, SARS2-38, that potently neutralizes all SARS-CoV-2 variants of concern tested and protects mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engages a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of inhibitory antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-428529

ABSTRACT

The SARS-CoV-2 pandemic has led to an urgent need to understand the molecular basis for immune recognition of SARS-CoV-2 spike (S) glycoprotein antigenic sites. To define the genetic and structural basis for SARS-CoV-2 neutralization, we determined the structures of two human monoclonal antibodies COV2-2196 and COV2-21301, which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor binding domain (RBD) of SARS-CoV-2. COV2-2196 forms an "aromatic cage" at the heavy/light chain interface using germline-encoded residues in complementarity determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals1-4. The structure of COV2-2130 reveals that an unusually long LCDR1 and HCDR3 make interactions with the opposite face of the RBD from that of COV2-2196. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the critical residues of both antibodies and identified positions of concern for possible viral escape. Nonetheless, both COV2-2196 and COV2-2130 showed strong neutralizing activity against SARS-CoV-2 strain with recent variations of concern including E484K, N501Y, and D614G substitutions. These studies reveal germline-encoded antibody features enabling recognition of the RBD and demonstrate the activity of a cocktail like AZD7442 in preventing escape from emerging variant viruses.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-427324

ABSTRACT

Most human monoclonal antibodies (mAbs) neutralizing SARS-CoV-2 recognize the spike (S) protein receptor-binding domain and block virus interactions with the cellular receptor angiotensin-converting enzyme 2. We describe a panel of human mAbs binding to diverse epitopes on the N-terminal domain (NTD) of S protein from SARS-CoV-2 convalescent donors and found a minority of these possessed neutralizing activity. Two mAbs (COV2-2676 and COV2-2489) inhibited infection of authentic SARS-CoV-2 and recombinant VSV/SARS-CoV-2 viruses. We mapped their binding epitopes by alanine-scanning mutagenesis and selection of functional SARS-CoV-2 S neutralization escape variants. Mechanistic studies showed that these antibodies neutralize in part by inhibiting a post-attachment step in the infection cycle. COV2-2676 and COV2-2489 offered protection either as prophylaxis or therapy, and Fc effector functions were required for optimal protection. Thus, natural infection induces a subset of potent NTD-specific mAbs that leverage neutralizing and Fc-mediated activities to protect against SARS-CoV-2 infection using multiple functional attributes.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-424554

ABSTRACT

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes for therapeutic efficacy. Thus, potently neutralizing mAbs require Fc effector functions for maximal therapeutic benefit during therapy to modulate protective immune responses and mitigate lung disease.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-292078

ABSTRACT

Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and make a major contribution to the neutralizing antibody response elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding, and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same RBD surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies, and enable us to design escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same surface of the RBD but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-111005

ABSTRACT

The COVID-19 pandemic is a major threat to global health for which there are only limited medical countermeasures, and we lack a thorough understanding of mechanisms of humoral immunity1,2. From a panel of monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein isolated from the B cells of infected subjects, we identified several mAbs that exhibited potent neutralizing activity with IC50 values as low as 0.9 or 15 ng/mL in pseudovirus or wild-type (wt) SARS-CoV-2 neutralization tests, respectively. The most potent mAbs fully block the receptor-binding domain of S (SRBD) from interacting with human ACE2. Competition-binding, structural, and functional studies allowed clustering of the mAbs into defined classes recognizing distinct epitopes within major antigenic sites on the SRBD. Electron microscopy studies revealed that these mAbs recognize distinct conformational states of trimeric S protein. Potent neutralizing mAbs recognizing unique sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two murine models of SARS-CoV-2 infection, passive transfer of either COV2-2916 or COV2-2130 alone or a combination of both mAbs protected mice from severe weight loss and reduced viral burden and inflammation in the lung. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic cocktails.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-091462

ABSTRACT

Antibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date1,2. In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein. We stratify these mAbs into five major classes based on their reactivity to subdomains of S protein as well as their cross-reactivity to SARS-CoV. Many of these mAbs inhibit infection of authentic SARS-CoV-2 virus, with most neutralizing mAbs recognizing the receptor-binding domain (RBD) of S. This work defines sites of vulnerability on SARS-CoV-2 S and demonstrates the speed and robustness of new antibody discovery methodologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...