Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 8(9): 3547-3554, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37682632

ABSTRACT

We investigated the noise and photoresponse characteristics of various optical transparencies of nanotube networks to identify an optimal randomly oriented network of carbon nanotube (CNT)-based devices for UV-assisted gas sensing applications. Our investigation reveals that all of the studied devices demonstrate negative photoconductivity upon exposure to UV light. Our studies confirm the effect of UV irradiation on the electrical properties of CNT networks and the increased photoresponse with decreasing UV light wavelength. We also extend our analysis to explore the low-frequency noise properties of different nanotube network transparencies. Our findings indicate that devices with higher nanotube network transparencies exhibit lower noise levels. We conduct additional measurements of noise and resistance in an ethanol and acetone gas environment, demonstrating the high sensitivity of higher-transparent (lower-density) nanotube networks. Overall, our results indicate that lower-density nanotube networks hold significant promise as a viable choice for UV-assisted gas sensing applications.


Subject(s)
Nanotubes, Carbon , Ultraviolet Rays , Acetone , Ethanol
2.
Materials (Basel) ; 15(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35207939

ABSTRACT

The fabrication processes for silicon nitride photonic integrated circuits evolved from microelectronics components technology-basic processes have common roots and can be executed using the same type of equipment. In comparison to that of electronics components, passive photonic structures require fewer manufacturing steps and fabricated elements have larger critical dimensions. In this work, we present and discuss our first results on design and development of fundamental building blocks for silicon nitride integrated photonic platform. The scope of the work covers the full design and manufacturing chain, from numerical simulations of optical elements, design, and fabrication of the test structures to optical characterization and analysis the results. In particular, technological processes were developed and evaluated for fabrication of the waveguides (WGs), multimode interferometers (MMIs), and arrayed waveguide gratings (AWGs), which confirmed the potential of the technology and correctness of the proposed approach.

3.
Opt Express ; 29(24): 40259-40273, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809371

ABSTRACT

Holographic projectors and near-eye displays are a promising technology with truly three-dimensional, natural viewing and excellent energetic efficiency. Spatial light modulators with periodic pixel matrices cause image duplicates, which distract the viewer and waste energy of the playback beam. We present the engineering of the far field intensity envelope, which suppresses higher-order image duplicates in the simplest possible optical setup by physically changing the shape of modulator pixels with attached apodizing masks. Numerical and experimental results show the limited number of perceived duplicates and better uniformity in off-axis projections for the price of compromised energetic efficiency due to amplitude masks.

4.
Materials (Basel) ; 14(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576524

ABSTRACT

Carbon materials are becoming crucial in several industrial sectors. The drawbacks of these materials include their high cost and oil-based essence. In recent years, recycled materials have become possible alternative sources of carbon with several advantages. Firstly, the production of this alternative source of carbon may help to reduce biomass disposal, and secondly, it contributes to CO2 sequestration. The use of carbon derived from recycled materials by a pyrolysis treatment is called biochar. Here, we present composite materials based on different biochar filler contents dispersed in several thermoplastic polymer matrixes. Electrical conductivity and tensile break strength were investigated together with the material characterisation by DTA/TGA, XRD, and scanning electron microscopy (SEM) imaging. Materials with good flexibility and electrical conductivity were obtained. The local ordering in composites resembles both biochar and polymer ordering. The similarity between biochar and carbon nanotubes' (CNTs) XRD patterns may be observed. As biochar is highly cost-effective, the proposed composites could become a valid substitute for CNT composites in various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...