Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(6): 2828-2836, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36688382

ABSTRACT

Light-induced magnetization response unfolding on a temporal scale down to femtoseconds presents a way to convey information via spin manipulation. The advancement of the field requires exploration of new materials implementing various mechanisms for ultrafast magnetization dynamics. Here, pump-probe measurements of EuO-based ferromagnets by a time-resolved two-colour stroboscopic technique are reported. Epitaxial films of the pristine semiconductor and metallic Gd-doped EuO demonstrate photo-induced magnetization precession. Comparative experimental studies of both systems are carried out varying temperature, magnetic field, and polarization light helicity of the pump beam, followed by numerical estimates. The study establishes optical spin orientation by the electronic transition 4f75d0 → 4f65d1 as a mechanism triggering collective magnetization precession in these materials. The results suggest applications of EuO-based systems in optoelectronics and spintronics.

2.
Nano Lett ; 17(5): 2844-2851, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28367630

ABSTRACT

The optical properties of colloidal semiconductor nanocrystals are largely influenced by the trapping of charge carriers on the nanocrystal surface. Different concentrations of electron and hole traps and different rates of their capture to the traps provide dynamical charging of otherwise neutral nanocrystals. We study the photocharging formation and evolution dynamics in CdS colloidal quantum dots with native oleic acid surface ligands. A time-resolved technique with three laser pulses (pump, orientation, and probe) is developed to monitor the photocharging dynamics with picosecond resolution on wide time scales ranging from picoseconds to milliseconds. The detection is based on measuring the coherent spin dynamics of electrons, allowing us to distinguish the type of carrier in the QD core (electron or hole). We find that although initially negative photocharging happens because of fast hole trapping, it eventually evolves to positive photocharging due to electron trapping and hole detrapping. The positive photocharging lasts up to hundreds of microseconds at room temperature. These findings give insight into the photocharging process and provide valuable information for understanding the mechanisms responsible for the emission blinking in colloidal nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...