Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 289(3): R755-62, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15890787

ABSTRACT

Radiation exposure increases vascular responsiveness, and this change involves endothelial damage, as well as direct effects on vascular smooth muscle. In this study, we tested the hypothesis that myofilament Ca(2+) sensitivity in vascular smooth muscle is increased from single whole body gamma irradiation (6 Gy). We measured contractile responses from intact and permeabilized rat thoracic aortic rings combined with cytosolic Ca(2+) ([Ca(2+)](i)) measurements. The sensitivity to KCl and phenylephrine increased significantly in tissues from animals on the 9th and 30th days postirradiation compared with control. Irradiation also significantly increased Ca(2+) sensitivity in beta-escin permeabilized smooth muscle on the 9th and 30th days postirradiation. Inhibitors of protein kinase C, chelerythrine, and staurosporine, had no effect on the pCa-tension curves in control permeabilized tissues but significantly decreased Ca(2+) sensitivity in permeabilized tissues on the 9th and 30th days postirradiation. Phorbol dibutyrate (PDBu, 10(-7) M) increased Ca(2+) sensitivity in control skinned smooth muscle but was without effect in irradiated vascular rings. Simultaneous measurement of contractile force and [Ca(2+)](i) showed that myofilament Ca(2+) sensitivity defined as the ratio of force change to [Ca(2+)](i) significantly increased following gamma-irradiation. PDBu (10(-6) M) stimulation of intact aorta produced a sustained contraction, while the increase in [Ca(2+)](i) was transient. In irradiated tissues, PDBu-induced contractions were greater than those seen in control tissues but there was no elevation in [Ca(2+)](i). Taken together, these data strongly support the hypothesis that irradiation increases the sensitivity of vascular smooth muscle myofilaments to Ca(2+) and this effect is dependent on activation of protein kinase C.


Subject(s)
Actin Cytoskeleton/physiology , Actin Cytoskeleton/radiation effects , Calcium/physiology , Muscle, Smooth, Vascular/physiology , Muscle, Smooth, Vascular/radiation effects , Protein Kinase C/physiology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Aorta, Thoracic/radiation effects , Calcium/metabolism , Capillary Permeability , In Vitro Techniques , Intracellular Membranes/metabolism , Osmolar Concentration , Potassium Chloride/pharmacology , Rats , Rats, Inbred WKY , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...