Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 824: 146389, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35257790

ABSTRACT

Mechanisms of reproductive isolation between closely related sympatric species are of high evolutionary significance as they may function as initial drivers of speciation and protect species integrity afterwards. Proteins involved in the establishment of reproductive barriers often evolve fast and may be key players in cessation of gene flow between the incipient species. The five Atlantic Littorina (Neritrema) species represent a notable example of recent radiation. The geographic ranges of these young species largely overlap and the mechanisms of reproductive isolation are poorly understood. In this study, we performed a detailed analysis of the reproductive protein LOSP, previously identified in Littorina. We showed that this protein is evolutionary young and taxonomically restricted to the genus Littorina. It has high sequence variation both within and between Littorina species, which is compatible with its presumable role in the reproductive isolation. The strongest differences in the LOSP structure were detected between Littorina subgenera with distinctive repetitive motifs present exclusively in the Neritrema species, but not in L. littorea. Moreover, the sequence of these repetitive structural elements demonstrates a high homology with genetic elements of bacteria, identified as components of Littorina associated microbiomes. We suggest that these elements were acquired from a symbiotic bacterial donor via horizontal genetic transfer (HGT), which is indirectly confirmed by the presence of multiple transposable elements in the LOSP flanking and intronic regions. Furthermore, we hypothesize that this HGT-driven evolutionary innovation promoted LOSP function in reproductive isolation, which might be one of the factors determining the intensive cladogenesis in the Littorina (Neritrema) lineage in contrast to the anagenesis in the L. littorea clade.


Subject(s)
Microbiota , Snails , Animals , Bacteria , Gene Flow , Genetic Speciation , Reproductive Isolation , Snails/genetics
2.
Environ Sci Pollut Res Int ; 23(11): 10308-10316, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26638969

ABSTRACT

This study is part of our investigations about the release of persistent organic pollutants from melting Alpine glaciers and the relevance of the glaciers as secondary sources of legacy pollutants. Here, we studied the melt-related release of polychlorinated biphenyls (PCBs) in proglacial lakes and glacier streams of the catchment of the Silvretta glacier, located in the Swiss Alps. To explore a spatial and temporal distribution of chemicals in glacier melt, we combined two approaches: (1) analysing a sediment record as an archive of past remobilization and (2) passive water sampling to capture the current release of PCBs during melt period. In addition, we determined PCBs in a non-glacier-fed stream as a reference for the background pollutant level in the area. The PCBs in the sediment core from the Silvretta lake generally complied with trends of PCB emissions into the environment. Elevated concentrations during the most recent ten years, comparable in level with times of the highest atmospheric input, were attributed to accelerated melting of the glacier. This interpretation is supported by the detected PCB fractionation pattern towards heavier, less volatile congeners, and by increased activity concentrations of the radioactive tracer (137)Cs in this part of the sediment core. In contrast, PCB concentrations were not elevated in the stream water, since no significant difference between pollutant concentrations in the glacier-fed and the non-glacier-fed streams was detected. In stream water, no current decrease of the PCBs with distance from the glacier was observed. Thus, according to our data, an influence of PCBs release due to accelerated glacier melt was only detected in the proglacial lake, but not in the other compartments of the Silvretta catchment.


Subject(s)
Ice Cover/chemistry , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments/analysis , Lakes/analysis , Rivers , Switzerland , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...