Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 9: 848689, 2022.
Article in English | MEDLINE | ID: mdl-35495632

ABSTRACT

Technologies for discovering peptides as potential therapeutics have rapidly advanced in recent years with significant interest from both academic and pharmaceutical labs. These advancements in turn drive the need for new computational tools to design peptides for purposes of advancing lead molecules into the clinic. Here we report the development and application of a new automated tool, AutoRotLib, for parameterizing a diverse set of non-canonical amino acids (NCAAs), N-methyl, or peptoid residues for use with the computational design program Rosetta. In addition, we developed a protocol for designing thioether-cyclized macrocycles within Rosetta, due to their common application in mRNA display using the RaPID platform. To evaluate the utility of these new computational tools, we screened a library of canonical and NCAAs on both a linear peptide and a thioether macrocycle, allowing us to quickly identify mutations that affect peptide binding and subsequently measure our results against previously published data. We anticipate in silico screening of peptides against a diverse chemical space will be a fundamental component for peptide design and optimization, as more amino acids can be explored in a single in silico screen than an in vitro screen. As such, these tools will enable maturation of peptide affinity for protein targets of interest and optimization of peptide pharmacokinetics for therapeutic applications.

2.
PLoS Comput Biol ; 16(9): e1008103, 2020 09.
Article in English | MEDLINE | ID: mdl-32956350

ABSTRACT

Highly coordinated water molecules are frequently an integral part of protein-protein and protein-ligand interfaces. We introduce an updated energy model that efficiently captures the energetic effects of these ordered water molecules on the surfaces of proteins. A two-stage method is developed in which polar groups arranged in geometries suitable for water placement are first identified, then a modified Monte Carlo simulation allows highly coordinated waters to be placed on the surface of a protein while simultaneously sampling amino acid side chain orientations. This "semi-explicit" water model is implemented in Rosetta and is suitable for both structure prediction and protein design. We show that our new approach and energy model yield significant improvements in native structure recovery of protein-protein and protein-ligand docking discrimination tests.


Subject(s)
Binding Sites/physiology , Molecular Docking Simulation , Protein Binding/physiology , Proteins , Water , Algorithms , Amino Acids/chemistry , Amino Acids/metabolism , Hydrogen Bonding , Ligands , Monte Carlo Method , Proteins/chemistry , Proteins/metabolism , Water/chemistry , Water/metabolism
3.
Nature ; 548(7667): 352-355, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28682307

ABSTRACT

Misfolded endoplasmic reticulum proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the membrane, and degraded by the proteasome-a pathway termed endoplasmic reticulum-associated protein degradation (ERAD). Proteins with misfolded domains in the endoplasmic reticulum lumen or membrane are discarded through the ERAD-L and ERAD-M pathways, respectively. In Saccharomyces cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain. Hrd1 is the crucial membrane component for retro-translocation, but it is unclear whether it forms a protein-conducting channel. Here we present a cryo-electron microscopy structure of S. cerevisiae Hrd1 in complex with its endoplasmic reticulum luminal binding partner, Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight transmembrane segments, five of which form an aqueous cavity extending from the cytosol almost to the endoplasmic reticulum lumen, while a segment of the neighbouring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features of protein-conducting conduits that facilitate polypeptide movement in the opposite direction-from the cytosol into or across membranes. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the endoplasmic reticulum membrane.


Subject(s)
Cryoelectron Microscopy , Endoplasmic Reticulum-Associated Degradation , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Hydrophobic and Hydrophilic Interactions , Membrane Glycoproteins/chemistry , Models, Molecular , Protein Conformation , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry
4.
J Extracell Vesicles ; 6(1): 1333882, 2017.
Article in English | MEDLINE | ID: mdl-28717424

ABSTRACT

Extracellular vesicles (EVs) hold great potential as novel systems for nucleic acid delivery due to their natural composition. Our goal was to load EVs with microRNA that are synthesized by the cells that produce the EVs. HEK293T cells were engineered to produce EVs expressing a lysosomal associated membrane, Lamp2a fusion protein. The gene encoding pre-miR-199a was inserted into an artificial intron of the Lamp2a fusion protein. The TAT peptide/HIV-1 transactivation response (TAR) RNA interacting peptide was exploited to enhance the EV loading of the pre-miR-199a containing a modified TAR RNA loop. Computational modeling demonstrated a stable interaction between the modified pre-miR-199a loop and TAT peptide. EMSA gel shift, recombinant Dicer processing and luciferase binding assays confirmed the binding, processing and functionality of the modified pre-miR-199a. The TAT-TAR interaction enhanced the loading of the miR-199a into EVs by 65-fold. Endogenously loaded EVs were ineffective at delivering active miR-199a-3p therapeutic to recipient SK-Hep1 cells. While the low degree of miRNA loading into EVs through this approach resulted in inefficient distribution of RNA cargo into recipient cells, the TAT TAR strategy to load miRNA into EVs may be valuable in other drug delivery approaches involving miRNA mimics or other hairpin containing RNAs.

5.
J Lipid Res ; 58(5): 1021-1029, 2017 05.
Article in English | MEDLINE | ID: mdl-28250025

ABSTRACT

Consumption of the tomato carotenoid, lycopene, has been associated with favorable health benefits. Some of lycopene's biological activity may be due to metabolites resulting from cleavage of the lycopene molecule. Because of their structural similarity to the retinoic acid receptor (RAR) antagonist, ß-apo-13-carotenone, the "first half" putative oxidative cleavage products of the symmetrical lycopene have been synthesized. All transformations proceed in moderate to good yield and some with high stereochemical integrity allowing ready access to these otherwise difficult to obtain terpenoids. In particular, the methods described allow ready access to the trans isomers of citral (geranial) and pseudoionone, important flavor and fragrance compounds that are not readily available isomerically pure and are building blocks for many of the longer apolycopenoids. In addition, all of the apo-11, apo-13, and apo-15 lycopenals/lycopenones/lycopenoic acids have been prepared. These compounds have been evaluated for their effect on RAR-induced genes in cultured hepatoma cells and, much like ß-apo-13-carotenone, the comparable apo-13-lycopenone and the apo-15-lycopenal behave as RAR antagonists. Furthermore, molecular modeling studies demonstrate that the apo-13-lycopenone efficiently docked into the ligand binding site of RARα. Finally, isothermal titration calorimetry studies reveal that apo-13-lycopenone acts as an antagonist of RAR by inhibiting coactivator recruitment to the receptor.


Subject(s)
Carotenoids/chemical synthesis , Carotenoids/pharmacology , Receptors, Retinoic Acid/antagonists & inhibitors , Carotenoids/chemistry , Carotenoids/metabolism , Chemistry Techniques, Synthetic , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Lycopene , Molecular Docking Simulation , Protein Conformation , Receptors, Retinoic Acid/chemistry , Receptors, Retinoic Acid/metabolism
6.
Mol Cell ; 55(1): 31-46, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24882211

ABSTRACT

MutS protein homolog 2 (MSH2) is a key DNA mismatch repair protein. It forms the MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSß) heterodimers, which help to ensure genomic integrity. MutSα not only recognizes and repairs mismatched nucleotides but also recognizes DNA adducts induced by DNA-damaging agents, and triggers cell-cycle arrest and apoptosis. Loss or depletion of MutSα from cells leads to microsatellite instability (MSI) and resistance to DNA damage. Although the level of MutSα can be reduced by the ubiquitin-proteasome pathway, the detailed mechanisms of this regulation remain elusive. Here we report that histone deacetylase 6 (HDAC6) sequentially deacetylates and ubiquitinates MSH2, leading to MSH2 degradation. In addition, HDAC6 significantly reduces cellular sensitivity to DNA-damaging agents and decreases cellular DNA mismatch repair activities by downregulation of MSH2. Overall, these findings reveal a mechanism by which proper levels of MutSα are maintained.


Subject(s)
Histone Deacetylases/physiology , MutS Homolog 2 Protein/metabolism , Acetylation , Animals , Cells, Cultured , HEK293 Cells , HeLa Cells , Histone Deacetylase 6 , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Mice , Protein Stability , Ubiquitination
7.
PLoS One ; 8(8): e71733, 2013.
Article in English | MEDLINE | ID: mdl-23977127

ABSTRACT

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated cation channel that contributes to fear and pain as well as neuronal damage following persistent cerebral acidosis. Neuropeptides can affect acid-induced neuronal injury by altering ASIC1a inactivation and/or steady-state desensitization. Yet, exactly how ASIC1a inactivation and desensitization occur or are modulated by peptides is not completely understood. We found that regions of the extracellular palm domain and the ß(11-12) linker are important for inactivation and steady-state desensitization of ASIC1a. The single amino acid substitutions L280C and L415C dramatically enhanced the rate of inactivation and altered the pH-dependence of steady-state desensitization. Further, the use of methanethiosulfonate (MTS) reagents suggests that the lower palm region (L280C) undergoes a conformational change when ASIC1a transitions from closed to desensitized. We determined that L280C also displays an altered response to the RFamide peptide, FRRFamide. Further, the presence of FRRFamide limited MTS modification of L280C. Together, these results indicate a potential role of the lower palm domain in peptide modulation and suggest RFamide-related peptides promote conformational changes within this region. These data provide empirical support for the idea that L280, and likely this region of the central vestibule, is intimately involved in channel inactivation and desensitization.


Subject(s)
Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/metabolism , Ion Channel Gating , Neuropeptides/metabolism , Animals , Humans , Mesylates/metabolism , Mutation , Protein Structure, Tertiary , Structure-Activity Relationship , Xenopus laevis
8.
Bioorg Med Chem ; 21(15): 4730-43, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23757208

ABSTRACT

The present study describes our ongoing efforts toward the discovery of drugs that selectively target nAChR subtypes. We exploited knowledge on nAChR ligands and their binding site that were previously identified by our laboratory through virtual screenings and identified benzamide analogs as a novel chemical class of neuronal nicotinic receptor (nAChR) ligands. The lead molecule, compound 1 (4-(allyloxy)-N-(6-methylpyridin-2-yl)benzamide) inhibits nAChR activity with an IC50 value of 6.0 (3.4-10.6) µM on human α4ß2 nAChRs with a ∼5-fold preference against human α3ß4 nAChRs. Twenty-six analogs of compound 1 were also either synthesized or purchased for structure-activity relationship (SAR) studies and provided information relating the chemical/structural properties of the molecules to their ability to inhibit nAChR activity. The discovery of subtype-selective ligands of nAChRs described here should contribute significantly to our understanding of the involvement of specific nAChR subtypes in normal and pathophysiological states.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/chemistry , Allosteric Regulation , Drug Discovery , Humans , Models, Molecular , Receptors, Nicotinic/metabolism , Structure-Activity Relationship
9.
Cell Rep ; 3(2): 386-400, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23403290

ABSTRACT

Activation of the transcription factor NF-κB is essential for innate immune function and requires strict regulation. The micronutrient zinc modulates proper host defense, and zinc deficiency is associated with elevated inflammation and worse outcomes in response to bacterial infection and sepsis. Previous studies suggest that zinc may regulate NF-κB activity during innate immune activation, but a mechanistic basis to support this has been lacking. Herein, we report that the zinc transporter SLC39A8 (ZIP8) is a transcriptional target of NF-κB and functions to negatively regulate proinflammatory responses through zinc-mediated down-modulation of IκB kinase (IKK) activity in vitro. Accordingly, fetal fibroblasts obtained from Slc39a8 hypomorphic mice exhibited dysregulated zinc uptake and increased NF-κB activation. Consistent with this, mice provided zinc-deficient dietary intakes developed excessive inflammation to polymicrobial sepsis in conjunction with insufficient control of IKK. Our findings identify a negative feedback loop that directly regulates innate immune function through coordination of zinc metabolism.


Subject(s)
Cation Transport Proteins/metabolism , NF-kappa B/antagonists & inhibitors , Zinc/metabolism , Animals , Base Sequence , Binding Sites , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/genetics , Cells, Cultured , HEK293 Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , NF-kappa B/genetics , NF-kappa B/metabolism , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Transcriptional Activation
10.
J Nat Prod ; 76(2): 243-9, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23327794

ABSTRACT

Microcos paniculata is a large shrub or small tree that grows in several countries in South and Southeast Asia. In the present study, three new piperidine alkaloids, microgrewiapines A-C (1-3), as well as three known compounds, inclusive of microcosamine A (4), 7'-(3',4'-dihydroxyphenyl)-N-[4-methoxyphenyl)ethyl]propenamide (5), and liriodenine (6), were isolated from cytotoxic fractions of the separate chloroform-soluble extracts of the stem bark, branches, and leaves of M. paniculata. Compounds 1-6 and 1a (microgrewiapine A 3-acetate) showed a range of cytotoxicity values against the HT-29 human colon cancer cell line. When evaluated for their effects on human α3ß4 or α4ß2 nicotinic acetylcholine receptors (nAChRs), several of these compounds were shown to be active as nAChR antagonists. As a result of this study, microgrewiapine A (1) was found to be a selective cytotoxic agent for colon cancer cells over normal colon cells and to exhibit nicotinic receptor antagonistic activity for both the hα3ß4 and hα4ß2 receptor subtypes.


Subject(s)
Alkaloids/isolation & purification , Alkaloids/pharmacology , Malvaceae/chemistry , Nicotinic Antagonists/isolation & purification , Nicotinic Antagonists/pharmacology , Piperidines/isolation & purification , Piperidines/pharmacology , Receptors, Nicotinic/drug effects , Alkaloids/chemistry , Bridged Bicyclo Compounds, Heterocyclic , Colonic Neoplasms/drug therapy , HT29 Cells , Humans , Molecular Structure , Nicotinic Antagonists/chemistry , Piperidines/chemistry , Plant Leaves/chemistry , Vietnam
11.
ACS Chem Neurosci ; 3(9): 682-92, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-23019495

ABSTRACT

Neuronal nicotinic receptors (nAChRs) have been implicated in several diseases and disorders such as autism spectrum disorders, Alzheimer's disease, Parkinson's disease, epilepsy, and nicotine addiction. To understand the role of nAChRs in these conditions, it would be beneficial to have selective molecules that target specific nAChRs in vitro and in vivo. Our laboratory has previously identified a novel allosteric site on human α4ß2 nAChRs using a series of computational and in vitro approaches. At this site, we have identified negative allosteric modulators that selectively inhibit human α4ß2 nAChRs, a subtype implicated in nicotine addiction. This study characterizes the allosteric site via site-directed mutagenesis. Three amino acids (Phe118, Glu60, and Thr58) on the ß2 subunit were shown to participate in the inhibitory properties of the selective antagonist KAB-18 and provided insights into its antagonism of human α4ß2 nAChRs. SAR studies with KAB-18 analogues and various mutant α4ß2 nAChRs also provided information concerning how different physiochemical features influence the inhibition of nAChRs through this allosteric site. Together, these studies identify the amino acids that contribute to the selective antagonism of human α4ß2 nAChRs at this allosteric site. Finally, these studies define the physiochemical features of ligands that influence interaction with specific amino acids in this allosteric site.


Subject(s)
Biphenyl Compounds/pharmacology , Neurons/metabolism , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Piperidines/pharmacology , Receptors, Nicotinic/metabolism , Binding Sites , Calcium/metabolism , Humans , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Mutation/physiology , Neurons/drug effects , Phenylalanine/chemistry , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Structure-Activity Relationship , Threonine/chemistry
12.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23008441

ABSTRACT

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cells, Cultured , Cytoplasm/enzymology , Cytoplasm/genetics , Cytoplasm/metabolism , Dogs , Genetic Variation , HEK293 Cells , Humans , Mice , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phosphorylation , Protein Processing, Post-Translational/genetics
13.
J Med Chem ; 54(24): 8681-92, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22060139

ABSTRACT

Neuronal nicotinic receptors have been implicated in several diseases and disorders such as autism, Alzheimer's disease, Parkinson's disease, epilepsy, and various forms of addiction. To understand the role of nicotinic receptors in these conditions, it would be beneficial to have selective molecules that target specific nicotinic receptors in vitro and in vivo. Our laboratory has previously identified novel negative allosteric modulators of human α4ß2 (Hα4ß2) and human α3ß4 (Hα3ß4) nicotinic receptors. The effects of novel sulfonylpiperazine analogues that act as negative allosteric modulators on both Hα4ß2 nAChRs and Hα3ß4 nAChRs were investigated. This work, through structure-activity relationship (SAR) studies, describes the chemical features of these molecules that are important for both potency and selectivity on Hα4ß2 nAChRs.


Subject(s)
Neurons/metabolism , Piperazines/chemical synthesis , Receptors, Nicotinic/metabolism , Sulfones/chemical synthesis , Allosteric Regulation , Calcium/metabolism , Cell Line , Humans , Piperazines/chemistry , Piperazines/pharmacology , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
14.
PLoS One ; 6(9): e24949, 2011.
Article in English | MEDLINE | ID: mdl-21949802

ABSTRACT

Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4ß2 and α3ß4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the ß2 subunit were independently mutated to the corresponding residues found on the ß4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4ß2 over α3ß4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4ß2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders.


Subject(s)
Allosteric Site , Receptors, Nicotinic/metabolism , Calcium/metabolism , Cells, Cultured , Humans , Kidney/cytology , Kidney/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Nicotinic Agonists/metabolism , Nicotinic Antagonists/metabolism , Protein Conformation , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Structure-Activity Relationship
15.
J Biol Chem ; 286(33): 28876-28888, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21712391

ABSTRACT

γ-Glutamyl transpeptidase (GGT) is a heterodimeric membrane enzyme that catalyzes the cleavage of extracellular glutathione and other γ-glutamyl-containing compounds. GGT is synthesized as a single polypeptide (propeptide) that undergoes autocatalytic cleavage, which results in the formation of the large and small subunits that compose the mature enzyme. GGT is extensively N-glycosylated, yet the functional consequences of this modification are unclear. We investigated the effect of N-glycosylation on the kinetic behavior, stability, and functional maturation of GGT. Using site-directed mutagenesis, we confirmed that all seven N-glycosylation sites on human GGT are modified by N-glycans. Comparative enzyme kinetic analyses revealed that single substitutions are functionally tolerated, although the N95Q mutation resulted in a marked decrease in the cleavage efficiency of the propeptide. However, each of the single site mutants exhibited decreased thermal stability relative to wild-type GGT. Combined mutagenesis of all N-glycosylation sites resulted in the accumulation of the inactive propeptide form of the enzyme. Use of N-glycosylation inhibitors demonstrated that binding of the core N-glycans, not their subsequent processing, is the critical glycosylation event governing the autocleavage of GGT. Although N-glycosylation is necessary for maturation of the propeptide, enzymatic deglycosylation of the mature wild-type GGT does not substantially impact either the kinetic behavior or thermal stability of the fully processed human enzyme. These findings are the first to establish that co-translational N-glycosylation of human GGT is required for the proper folding and subsequent cleavage of the nascent propeptide, although retention of these N-glycans is not necessary for maintaining either the function or structural stability of the mature enzyme.


Subject(s)
Protein Folding , Protein Modification, Translational/physiology , gamma-Glutamyltransferase/metabolism , Amino Acid Substitution , Asparagine/genetics , Asparagine/metabolism , Catalysis , Enzyme Stability/physiology , Glycosylation , HEK293 Cells , Humans , Kinetics , Mutagenesis, Site-Directed , Mutation, Missense , Structure-Activity Relationship , gamma-Glutamyltransferase/genetics
16.
ACS Med Chem Lett ; 2(11): 855-60, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-24936233

ABSTRACT

We performed a hierarchical structure-based virtual screening utilizing a comparative model of the human α4ß2 neuronal nicotinic acetylcholine receptor (nAChR) extracellular domain. Compounds were selected for experimental testing based on structural diversity, binding pocket location, and standard error of the free energy scoring function used in the screening. Four of the eleven in silico hit compounds showed promising activity with low micromolar IC50 values in a calcium accumulation assay. Two of the antagonists were also proven to be selective for human α4ß2 vs human α3ß4 nAChRs. This is the first report of successful discovery of novel nAChR antagonists through the use of structure-based virtual screening with a human nAChR homology model. These compounds may serve as potential novel scaffolds for further development of selective nAChR antagonists.

17.
J Pharmacol Exp Ther ; 334(3): 761-74, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20551292

ABSTRACT

Allosteric modulation of neuronal nicotinic acetylcholine receptors (nAChRs) is considered to be one of the most promising approaches for therapeutics. We have previously reported on the pharmacological activity of several compounds that act as negative allosteric modulators (NAMs) of nAChRs. In the following studies, the effects of 30 NAMs from our small chemical library on both human alpha4beta2 (Halpha4beta2) and human alpha3beta4 (Halpha3beta4) nAChRs expressed in human embryonic kidney ts201 cells were investigated. During calcium accumulation assays, these NAMs inhibited nAChR activation with IC(50) values ranging from 2.4 microM to more than 100 microM. Several NAMs showed relative selectivity for Halpha4beta2 nAChRs with IC(50) values in the low micromolar range. A lead molecule, KAB-18, was identified that shows relative selectivity for Halpha4beta2 nAChRs. This molecule contains three phenyl rings, one piperidine ring, and one ester bond linkage. Structure-activity relationship (SAR) analyses of our data revealed three regions of KAB-18 that contribute to its relative selectivity. Predictive three-dimensional quantitative SAR (comparative molecular field analysis and comparative molecular similarity indices analysis) models were generated from these data, and a pharmacophore model was constructed to determine the chemical features that are important for biological activity. Using docking approaches and molecular dynamics on a Halpha4beta2 nAChR homology model, a binding mode for KAB-18 at the alpha/beta subunit interface that corresponds to the predicted pharmacophore is described. This binding mode was supported by mutagenesis studies. In summary, these studies highlight the importance of SAR, computational, and molecular biology approaches for the design and synthesis of potent and selective antagonists targeting specific nAChR subtypes.


Subject(s)
Neurons/drug effects , Receptors, Nicotinic/drug effects , Algorithms , Biphenyl Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Humans , Hydrogen Bonding , Models, Molecular , Mutagenesis, Site-Directed , Nicotinic Agonists/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Quantitative Structure-Activity Relationship , Receptors, Nicotinic/genetics , Structure-Activity Relationship
18.
J Mol Biol ; 394(3): 423-34, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19720067

ABSTRACT

RCL is an enzyme that catalyzes the N-glycosidic bond cleavage of purine 2'-deoxyribonucleoside 5'-monophosphates, a novel enzymatic reaction reported only recently. In this work, we determined the solution structure by multidimensional NMR and provide a structural framework to elucidate its mechanism with computational simulation. RCL is a symmetric homodimer, with each monomer consisting of a five-stranded parallel beta-sheet sandwiched between five alpha-helices. Three of the helices form the dimer interface, allowing two monomers to pack side by side. The overall architecture featuring a Rossmann fold is topologically similar to that of deoxyribosyltransferases, with major differences observed in the putative substrate binding pocket and the C-terminal tail. The latter is seemingly flexible and projecting away from the core structure in RCL, but loops back and is positioned at the bottom of the neighboring active site in the transferases. This difference may bear functional implications in the context of nucleobase recognition involving the C-terminal carboxyl group, which is only required in the reverse reaction by the transferases. It was also noticed that residues around the putative active site show significant conformational variation, suggesting that protein dynamics may play an important role in the enzymatic function of apo-RCL. Overall, the work provides invaluable insight into the mechanism of a novel N-glycosidase from the structural point of view, which in turn will allow rational anti-tumor and anti-angiogenesis drug design.


Subject(s)
N-Glycosyl Hydrolases/chemistry , Animals , Catalytic Domain , Computer Simulation , Dimerization , Guanosine Monophosphate/metabolism , Kinetics , Models, Molecular , N-Glycosyl Hydrolases/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solutions , Stereoisomerism , Thermodynamics
19.
J Chem Inf Model ; 49(6): 1581-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19449853

ABSTRACT

Compounds containing boron atoms play increasingly important roles in the therapy and diagnosis of various diseases, particularly cancer. However, computational drug design of boron-containing therapeutics and diagnostics is hampered by the fact that many software packages used for this purpose lack parameters for all or part of the various types of boron atoms. In the present paper, we describe simple and efficient strategies to overcome this problem, which are based on the replacement of boron atom types with carbon atom types. The developed methods were validated by docking closo- and nido-carboranyl antifolates into the active site of a human dihydrofolate reductase (hDHFR) using AutoDock, Glide, FlexX, and Surflex and comparing the obtained docking poses with the poses of their counterparts in the original hDHFR-carboranyl antifolate crystal structures. Under optimized conditions, AutoDock and Glide were equally good in docking of the closo-carboranyl antifolates followed by Surflex and FlexX, whereas Autodock, Glide, and Surflex proved to be comparably efficient in the docking of nido-carboranyl antifolates followed by FlexX. Differences in geometries and partial atom charges in the structures of the carboranyl antifolates resulting from different data sources and/or optimization methods did not impact the docking performances of AutoDock or Glide significantly. Binding energies predicted by all four programs were in accordance with experimental data.


Subject(s)
Boranes/chemistry , Boranes/metabolism , Drug Design , Models, Molecular , Boranes/pharmacology , Catalytic Domain , Computer Simulation , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Humans , Molecular Conformation , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism
20.
J Pharmacol Exp Ther ; 329(2): 505-14, 2009 May.
Article in English | MEDLINE | ID: mdl-19201992

ABSTRACT

Hypermethylation of 5'-cytosine-guanosine islands of tumor suppressor genes resulting in their silencing has been proposed to be a hallmark of various tumors. Modulation of DNA methylation with DNA methylation inhibitors has been shown to result in cancer cell differentiation or apoptosis and represents a novel strategy for chemotherapy. Currently, effective DNA methylation inhibitors are mainly limited to decitabine and 5-azacytidine, which still show unfavorable toxicity profiles in the clinical setting. Thus, discovery and development of novel hypomethylating agents, with a more favorable toxicity profile, is essential to broaden the spectrum of epigenetic therapy. Parthenolide, the principal bioactive sesquiterpene lactone of feverfew, has been shown to alkylate Cys(38) of p65 to inhibit nuclear factor-kappaB activation and exhibit anti-tumor activity in human malignancies. In this article, we report that parthenolide 1) inhibits DNA methyltransferase 1 (DNMT1) with an IC(50) of 3.5 microM, possibly through alkylation of the proximal thiolate of Cys(1226) of the catalytic domain by its gamma-methylene lactone, and 2) down-regulates DNMT1 expression possibly associated with its SubG(1) cell-cycle arrest or the interruption of transcriptional factor Sp1 binding to the promoter of DNMT1. These dual functions of parthenolide result in the observed in vitro and in vivo global DNA hypomethylation. Furthermore, parthenolide has been shown to reactivate tumor suppressor HIN-1 gene in vitro possibly associated with its promoter hypomethylation. Hence, our study established parthenolide as an effective DNA methylation inhibitor, representing a novel prototype for DNMT1 inhibitor discovery and development from natural structural-diversified sesquiterpene lactones.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Methylation/drug effects , Lactones/pharmacology , Sesquiterpenes/pharmacology , Alkylation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Catalytic Domain , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chromatin Immunoprecipitation , Cysteine/metabolism , Cytokines/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , Electrophoretic Mobility Shift Assay , Female , Humans , Immunoblotting , Lactones/chemistry , Lactones/therapeutic use , Mice , Mice, Nude , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Promoter Regions, Genetic , Sesquiterpenes/chemistry , Sesquiterpenes/therapeutic use , Sp1 Transcription Factor/metabolism , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...