Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 808: 152081, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863738

ABSTRACT

Fertilizer application is a widely used management technique for increasing forage production from agricultural grassland. Fertilization is also a key driver of changes in soil nutrient status and plant species composition of grassland as shown in many short-term studies. Results from long-term experiments can further improve understanding of plant-soil relationships and help with management recommendations for agricultural and environmental outcomes. We collected data from a long-term experiment on alluvial meadow (Admont Grassland Experiment, Austria; established 1946) with 24 fertilization treatments managed under a three-cut regime. Soil sampling in autumn 2015 and vegetation sampling in spring 2016 were conducted in seven selected treatments. Combinations of N (nitrogen 80 kg ha-1), P (phosphorus 35 kg ha-1) and K (potassium 100 kg ha-1) were applied annually and compared with a non-fertilized control. Treatments were: Control, N, P, K, NP, NK, PK and NPK fertilization. Long-term different fertilization affected soil pH and nutrient concentrations in the soil and plant species composition, but no significant effects on species richness were found. Short species (<0.5 m height) prevailed in all treatments regardless of nutrient application, probably as a result of the three-cut defoliation. The dry matter biomass (DMB) yield in the Control was limited by N and P and synergisticly co-limited by N, P and K, and DMB yields of more than 5 t ha-1 per year were achieved under nutrient combinations containing P (NP, PK, NPK) without loss of species richness. Results from the Admont Grassland Experiment show that the tested nutrient combinations significantly increased DMB yield and changed the species composition, but without significant effects on species richness. Long-term biomass yields of more than 5 t ha-1 DMB per year can be achieved with any nutrient combination containing P without loss species richness in an alluvial meadow managed under a three-cut regime.


Subject(s)
Fertilizers , Soil , Agriculture , Grassland , Nitrogen
2.
PLoS One ; 16(4): e0249445, 2021.
Article in English | MEDLINE | ID: mdl-33793653

ABSTRACT

This study investigated the effect of restoration management of a weed-infested area, previously used as cattle resting place, on herbage production and nutrient concentrations in the soil and herbage. The experiment was undertaken from 2004 to 2011 at the National Park of Nízké Tatry, Slovakia. Three treatments were applied: (i) cutting twice per year, (ii) herbicide application, followed after three weeks by reseeding with a mixture of vascular plant species and then cut twice per year, and (iii) unmanaged. Treatments had significant effect on biomass production and concentration of nutrients in the soil and in herbage. Nutrient concentrations in herbage and in soil declined progressively under the cutting treatments and reached optimum ranges for dairy cattle at the end of the experiment when herbage N was less than 15 g kg-1 and herbage P was 3.4 g kg-1. There was also a strong positive relationship under the cutting treatments between soil nutrient concentrations and herbage nutrient concentrations for N, P, K, Mg and Ca. Although the cutting management as well as the combination of herbicide application with cutting management reduced nutrient concentrations in the soil and in herbage, the nutrient concentrations remained relatively high. We can conclude that restoration of grassland covered with weedy species like Urtica dioica and Rumex obtusifolius, with excessive levels of soil nutrients, cannot be achieved just by cutting and herbicide application.


Subject(s)
Environmental Restoration and Remediation/methods , Grassland , Animals , Biomass , Cattle , Nitrogen/metabolism , Poaceae/growth & development , Poaceae/metabolism , Potassium/metabolism , Slovakia , Soil/chemistry
3.
PLoS One ; 16(3): e0248804, 2021.
Article in English | MEDLINE | ID: mdl-33784309

ABSTRACT

Semi-natural grasslands occupy large parts of the European landscape but little information exists about seasonal variations in their nutritive value during the growing season. This paper presents results of novel data showing the effect of 13 years of previous contrasting management intensities on herbage nutritional value in relation to different dates of first defoliation (by grazing or haymaking). The treatments were: extensive management and intensive management from previous years (1998-2011). Both treatments were cut in June followed by intensive/extensive grazing for the rest of the grazing season (July-October). To evaluate forage quality in the first defoliation date, biomass sampling was performed in the year 2012 for 23 weeks from May to mid-October, and in 2013 for seven weeks from May to mid-June. Sampling was performed from plots that were not under management during the sampling year. Previous extensive management was associated with significantly reduced forage quality for in vitro organic matter digestibility (IVOMD), crude protein, neutral detergent fibre, acid detergent fibre and reduced divalent cations (Ca, Mg) and Na during the first seven weeks of the grazing season and the forage was suitable only for beef cattle. Due to low forage IVOMD, the forage is suitable only for cattle maintenance or for low quality hay when the start of grazing was postponed from seven weeks of vegetative growth to 13 weeks, regardless of the previous intensity. Herbage harvested after 13 weeks of the grazing season was of very low quality and was unsuitable as a forage for cattle when it was the only source of feed. Agri-environmental payments are necessary to help agricultural utilisation to maintain semi-natural grasslands by compensating for deterioration of forage quality, not only for the postponement of the first defoliation (either as cutting or grazing) after mid-June, but also when extensive management is required.


Subject(s)
Animal Feed/analysis , Grassland , Biomass , Minerals/analysis , Organic Chemicals/analysis , Plants , Rain , Species Specificity , Temperature
4.
Sci Total Environ ; 755(Pt 2): 142469, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33065510

ABSTRACT

Finding the best management strategies to restore grassland diversity and achieve a compromise between agricultural use and biodiversity protection is a global challenge. This paper reports novel data relating to the impacts of 19 years of restoration managements predicted to increase botanical diversity within reseeded upland temperate grassland common in less favoured areas in Europe. The treatments imposed were: continuous sheep grazing, with and without lime application; hay cutting only, with and without lime application; hay cutting followed by aftermath grazing, with and without lime application; and a control treatment continuing the previous site management (liming, NPK application and continuous sheep grazing). Defoliation type, irrespective of liming, was the key driver influencing plant species diversity (hay cutting followed by aftermath grazing > hay cutting > grazing). Grazing only managements supported grasses at the expense of forbs, and thus related plant species diversity significantly declined. Limed treatments had higher concentrations of Ca and Mg in the soil compared to those receiving no lime. However, no effects on species richness or plant species composition were found. Potassium was the only element whose plant-available concentration in the soil tended to decrease in response to cutting treatments with herbage removal. Postponing the first defoliation to the middle of the growing season enables forbs to reach seed production, and this was the most effective restoration management option for upland grassland (as hay cutting only, and as hay cut followed by aftermath grazing). Although continuous low-density sheep grazing is often adopted as a means of improving floristic biodiversity, deleterious effects of this on plant diversity mean that it cannot be recommended as a means of long-term maintenance or restoration management of European temperate grasslands.


Subject(s)
Grassland , Soil , Animals , Biodiversity , Europe , Poaceae , Sheep
6.
PLoS One ; 8(7): e69800, 2013.
Article in English | MEDLINE | ID: mdl-23922805

ABSTRACT

BACKGROUND: Current plant--herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions. METHODOLOGY/FINDINGS: We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands. CONCLUSIONS: Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality only at the community level.


Subject(s)
Ecosystem , Herbivory/physiology , Poaceae/physiology , Quantitative Trait, Heritable , Sheep/physiology , Animals , Biomass , Diet , Linear Models , Species Specificity
7.
Anim Sci J ; 84(8): 622-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23607767

ABSTRACT

An experiment to reveal functional response and heifers' performance to sward characteristics and forage chemical composition was conducted for 5 years in rotational (RSS) and continuous (CSS) stocking systems on native species-rich upland grassland. We measured sward characteristics, forage chemical composition, heifers' grazing behavior and live-weight gains from July to September. Mean sward surface height was lower on CSS than on RSS; grass and forb density, and white clover stolon length, were similar. Herbage on CSS had higher crude protein content and lower crude fiber content than on RSS. No difference existed in time budgets of grazing, ruminating and resting between stocking systems and season, while grazing rates were higher on CSS. Stocking rate was 1671 and 1332 kg per ha on CSS and RSS, individual daily live-weight gain 683 and 652 g on CSS and RSS. Gain per ha was 20 kg higher on CSS. Results suggested stocking systems on native species-rich grassland had no effect on activity time budgets or animal performance. Both RSS and CSS allow similar outputs for stocking rates in terms of individual daily live-weight gain. Key parameters determining heifers' behavior and performance were sward height, grass and forb density in the sward, and content of crude fiber and protein in forage.


Subject(s)
Animal Feed , Cattle/growth & development , Herbivory/physiology , Poaceae , Animals , Female , Seasons , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...