Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Neurosci ; 42(4): 692-701, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34862188

ABSTRACT

When we look at our body parts, we are immediately aware that they belong to us and we rarely doubt about the integrity, continuity, and sense of ownership of our body. Despite this certainty, immersive virtual reality (IVR) may lead to a strong feeling of embodiment over an artificial body part seen from a first-person perspective (1PP). Although such feeling of ownership (FO) has been described in different situations, it is not yet understood how this phenomenon is generated at neural level. To track the real-time brain dynamics associated with FO, we delivered transcranial magnetic stimuli over the hand region in the primary motor cortex (M1) and simultaneously recorded electroencephalography (EEG) in 19 healthy volunteers (11 male/8 female) watching IVR renderings of anatomically plausible (full-limb) versus implausible (hand disconnected from the forearm) virtual limbs. Our data show that embodying a virtual hand is temporally associated with a rapid drop of cortical activity of the onlookers' hand region in the M1 contralateral to the observed hand. Spatiotemporal analysis shows that embodying the avatar's hand is also associated with fast changes of activity within an interconnected fronto-parietal circuit ipsilateral to the brain stimulation. Specifically, an immediate reduction of connectivity with the premotor area is paralleled by an enhancement in the connectivity with the posterior parietal cortex (PPC) which is related to the strength of ownership illusion ratings and thus likely reflects conscious feelings of embodiment. Our results suggest that changes of bodily representations are underpinned by a dynamic cross talk within a highly-plastic, fronto-parietal network.SIGNIFICANCE STATEMENT Observing an avatar's body part from a first-person perspective (1PP) induces an illusory embodiment over it. What remains unknown are the cortical dynamics underpinning the embodiment of artificial agents. To shed light on the physiological mechanisms of embodiment we used a novel approach that combines noninvasive stimulation of the cortical motor-hand area and whole-scalp electroencephalographic (EEG) recordings in people observing an embodied artificial limb. We found that just before the illusion started, there is a decrease of activity of the motor-hand area accompanied by an increase of connectivity with the parietal region ipsilateral to the stimulation that reflects the ratings of the embodiment illusion. Our results suggest that changes of bodily representations are underpinned by a dynamic cross talk within a fronto-parietal circuit.


Subject(s)
Emotions/physiology , Frontal Lobe/physiology , Hand/physiology , Parietal Lobe/physiology , Photic Stimulation/methods , Visual Perception/physiology , Adult , Electroencephalography/methods , Female , Humans , Male , Transcranial Magnetic Stimulation/methods , Virtual Reality
2.
Sci Rep ; 11(1): 14938, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294822

ABSTRACT

The use of surface electromyography (sEMG) is rapidly spreading, from robotic prostheses and muscle computer interfaces to rehabilitation devices controlled by residual muscular activities. In this context, sEMG-based gesture recognition plays an enabling role in controlling prosthetics and devices in real-life settings. Our work aimed at developing a low-cost, print-and-play platform to acquire and analyse sEMG signals that can be arranged in a fully customized way, depending on the application and the users' needs. We produced 8-channel sEMG matrices to measure the muscular activity of the forearm using innovative nanoparticle-based inks to print the sensors embedded into each matrix using a commercial inkjet printer. Then, we acquired the multi-channel sEMG data from 12 participants while repeatedly performing twelve standard finger movements (six extensions and six flexions). Our results showed that inkjet printing-based sEMG signals ensured significant similarity values across repetitions in every participant, a large enough difference between movements (dissimilarity index above 0.2), and an overall classification accuracy of 93-95% for flexion and extension, respectively.

3.
Sci Rep ; 11(1): 4831, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649348

ABSTRACT

Real-world experience is typically multimodal. Evidence indicates that the facilitation in the detection of multisensory stimuli is modulated by the perceptual load, the amount of information involved in the processing of the stimuli. Here, we used a realistic virtual reality environment while concomitantly acquiring Electroencephalography (EEG) and Galvanic Skin Response (GSR) to investigate how multisensory signals impact target detection in two conditions, high and low perceptual load. Different multimodal stimuli (auditory and vibrotactile) were presented, alone or in combination with the visual target. Results showed that only in the high load condition, multisensory stimuli significantly improve performance, compared to visual stimulation alone. Multisensory stimulation also decreases the EEG-based workload. Instead, the perceived workload, according to the "NASA Task Load Index" questionnaire, was reduced only by the trimodal condition (i.e., visual, auditory, tactile). This trimodal stimulation was more effective in enhancing the sense of presence, that is the feeling of being in the virtual environment, compared to the bimodal or unimodal stimulation. Also, we show that in the high load task, the GSR components are higher compared to the low load condition. Finally, the multimodal stimulation (Visual-Audio-Tactile-VAT and Visual-Audio-VA) induced a significant decrease in latency, and a significant increase in the amplitude of the P300 potentials with respect to the unimodal (visual) and visual and tactile bimodal stimulation, suggesting a faster and more effective processing and detection of stimuli if auditory stimulation is included. Overall, these findings provide insights into the relationship between multisensory integration and human behavior and cognition.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4619-4622, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441381

ABSTRACT

This study aims at investigating the possibility to employ neurophysiological measures to assess the humanmachine interaction effectiveness. Such a measure can be used to compare new technologies or solutions, with the final purpose to enhance operator's experience and increase safety. In the present work, two different interaction modalities (Normal and Augmented) related to Air Traffic Management field have been compared, by involving 10 professional air traffic controllers in a control tower simulated environment. Experimental task consisted in locating aircrafts in different airspace positions by using the sense of hearing. In one modality (i.e. "Normal"), all the sound sources (aircrafts) had the same amplification factor. In the "Augmented" modality, the amplification factor of the sound sources located along the participant head sagittal axis was increased, while the intensity of sound sources located outside this axis decreased. In other words, when the user oriented his head toward the aircraft position, the related sound was amplified. Performance data, subjective questionnaires (i.e. NASA-TLX) and neurophysiological measures (i.e. EEG-based) related to the experienced workload have been collected. Results showed higher significant performance achieved by the users during the "Augmented" modality with respect to the "Normal" one, supported by a significant decreasing in experienced workload, evaluated by using EEG-based index. In addition, Performance and EEG-based workload index showed a significant negative correlation. On the contrary, subjective workload analysis did not show any significant trend. This result is a demonstration of the higher effectiveness of neurophysiological measures with respect to subjective ones for Human-Computer Interaction assessment.


Subject(s)
Aircraft , Man-Machine Systems , Sound Localization , Task Performance and Analysis , Workload , Auditory Perception , Electroencephalography , Hearing , Humans , Neurophysiological Monitoring , Occupations
5.
Eur J Neurosci ; 48(10): 3159-3170, 2018 11.
Article in English | MEDLINE | ID: mdl-30269394

ABSTRACT

Cognitive control during conflict monitoring, error processing, and post-error adjustment appear to be associated with the occurrence of midfrontal theta (MFÏ´). While this association is supported by correlational EEG studies, much less is known about the possible causal link between MFÏ´ and error and conflict processing. In the present study, we aimed to explore the role of band-specific effects in modulating the error system during a conflict resolution. In turn, we delivered transcranial alternating current stimulation (tACS) at different frequency bands (delta δ, theta θ, alpha α, beta ß, gamma γ) and sham stimulation over the medial frontal cortex (MFC) in 36 healthy participants performing a modified version of the Flanker task. Task performance and reports about the sensations (e.g. visual flickering, cutaneous burning) induced by the different frequency bands, were also recorded. We found that online θ-tACS increased the response speed to congruent stimuli after error execution with respect to sham stimulation. Importantly, the accuracy following the errors did not decrease because of speed-accuracy trade off. Moreover, tACS evoked visual and somatosensory sensations were significantly stronger at α-tACS and ß-tACS compared to other frequencies. Our findings suggest that theta activity plays a causative role in modulating behavioural adjustments during perceptual choices in a stimulus-response conflict task.


Subject(s)
Executive Function/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Theta Rhythm/physiology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Young Adult
6.
Eur J Neurosci ; 48(8): 2826-2835, 2018 10.
Article in English | MEDLINE | ID: mdl-29178557

ABSTRACT

Categorical clustering in the visual system is thought to have evolved as a function of intrinsic (intra-areal) and extrinsic (interareal) connectivity and experience. In the visual system, the extrastriate body area (EBA), an occipito-temporal region, responds to full body and body part images under the organizational principle of their functional/semantic meaning. Although frequency-specific modulations of neural activity associated with perceptive and cognitive functions are increasingly attracting the interest of neurophysiologists and cognitive neuroscientists, perceiving single body parts with different functional meaning and full body images induces time-frequency modulations over occipito-temporal electrodes are yet to be described. Here, we studied this issue by measuring EEG in participants who passively observed fingers, hands, arms and faceless full body images with four control plant stimuli, each bearing hierarchical analogy with the body stimuli. We confirmed that occipito-temporal electrodes (compatible with the location of EBA) show a larger event-related potential (ERP, N190) for body-related images. Furthermore, we identified a body part-specific (i.e. selective for hands and arms) theta event-related synchronization increase under the same electrodes. This frequency modulation associated with the perception of body effectors over occipito-temporal cortices is in line with recent findings of categorical organization of neural responses to human effectors in the visual system.


Subject(s)
Human Body , Occipital Lobe/physiology , Temporal Lobe/physiology , Theta Rhythm/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Photic Stimulation/methods , Young Adult
7.
Front Hum Neurosci ; 11: 120, 2017.
Article in English | MEDLINE | ID: mdl-28360849

ABSTRACT

Progress in medical science and technology drastically improved physicians' ability to interact with patient's physical body. Nevertheless, medicine still addresses the human body from a Hippocratic point of view, considering the organism and its processes just as a matter of mechanics and fluids. However, the interaction between the cognitive neuroscience of bodily self-consciousness (BSC), fundamentally rooted in the integration of multisensory bodily inputs, with virtual reality (VR), haptic technologies and robotics is giving a new meaning to the classic Juvenal's latin dictum "Mens sana in corpore sano" (a healthy mind in a healthy body). This vision provides the basis for a new research field, "Embodied Medicine": the use of advanced technologies for altering the experience of being in a body with the goal of improving health and well-being. Up to now, most of the research efforts in the field have been focused upon how external bodily information is processed and integrated. Despite the important results, we believe that existing bodily illusions still need to be improved to enhance their capability to effectively correct pathological dysfunctions. First, they do not follow the suggestions provided by the free-energy and predictive coding approaches. More, they lacked to consider a peculiar feature of the human body, the multisensory integration of internal inputs (interoceptive, proprioceptive and vestibular) that constitute our inner body dimension. So, a future challenge is the integration of simulation/stimulation technologies also able to measure and modulate this internal/inner experience of the body. Finally, we also proposed the concept of "Sonoception" as an extension of this approach. The core idea is to exploit recent technological advances in the acoustic field to use sound and vibrations to modify the internal/inner body experience.

8.
Eur J Neurosci ; 45(9): 1141-1151, 2017 05.
Article in English | MEDLINE | ID: mdl-28222235

ABSTRACT

To explore the link between Sense of Embodiment (SoE) over a virtual hand and physiological regulation of skin temperature, 24 healthy participants were immersed in virtual reality through a Head Mounted Display and had their real limb temperature recorded by means of a high-sensitivity infrared camera. Participants observed a virtual right upper limb (appearing either normally, or with the hand detached from the forearm) or limb-shaped non-corporeal control objects (continuous or discontinuous wooden blocks) from a first-person perspective. Subjective ratings of SoE were collected in each observation condition, as well as temperatures of the right and left hand, wrist and forearm. The observation of these complex, body and body-related virtual scenes resulted in increased real hand temperature when compared to a baseline condition in which a 3d virtual ball was presented. Crucially, observation of non-natural appearances of the virtual limb (discontinuous limb) and limb-shaped non-corporeal objects elicited high increase in real hand temperature and low SoE. In contrast, observation of the full virtual limb caused high SoE and low temperature changes in the real hand with respect to the other conditions. Interestingly, the temperature difference across the different conditions occurred according to a topographic rule that included both hands. Our study sheds new light on the role of an external hand's visual appearance and suggests a tight link between higher-order bodily self-representations and topographic regulation of skin temperature.


Subject(s)
Hand/physiology , Skin Temperature/physiology , Virtual Reality , Visual Perception/physiology , Adult , Body Temperature , Female , Humans , Male , Photic Stimulation/methods , User-Computer Interface
9.
Biol Psychol ; 125: 36-44, 2017 04.
Article in English | MEDLINE | ID: mdl-28238886

ABSTRACT

During encoding, the neural activity immediately before or during an event can predict whether that event will be later remembered. The contribution of brain activity immediately after an event to memory formation is however less known. Here, we used repetitive Transcranial Magnetic Stimulation (rTMS) to investigate the temporal dynamics of episodic memory encoding with a focus on post-stimulus time intervals. At encoding, rTMS was applied during the online processing of the word, at its offset, or 100, 200, 300 or 400ms thereafter. rTMS was delivered to the left ventrolateral (VLPFC) or dorsolateral prefrontal cortex (DLPFC). VLPFC rTMS during the first few hundreds of milliseconds after word offset disrupted subsequent recognition accuracy. We did not observe effects of DLPFC rTMS at any time point. These results suggest that encoding-related VLPFC engagement starts at a relatively late processing stage, and may reflect brain processes related to the offset of the stimulus.


Subject(s)
Memory, Episodic , Prefrontal Cortex/physiology , Verbal Behavior/physiology , Adult , Brain Mapping , Female , Humans , Male , Mental Recall/physiology , Transcranial Magnetic Stimulation/methods , Young Adult
10.
Sci Rep ; 6: 35174, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27734927

ABSTRACT

Deception is a pervasive phenomenon that greatly influences dyadic, groupal and societal interactions. Behavioural, physiological and neural signatures of this phenomenon have imporant implications for theoretical and applied research, but, because it is difficult for a laboratory to replicate the natural context in which deception occurs, contemporary research is still struggling to find such signatures. In this study, we tracked the facial temperature of participants who decided whether or not to deceive another person, in situations where their reputation was at risk or not. We used a high-sensitivity infrared device to track temperature changes to check for unique patterns of autonomic reactivity. Using a region-of-interest based approach we found that prior to any response there was a minimal increase in periorbital temperature (which indexes sympathetic activation, together with reduced cheek temperature) for the self-gain lies in the reputation-risk condition. Crucially, we found a rise in nose temperature (which indexes parasympathetic activation) for self-gain lies in the reputation-risk condition, not only during response preparation but also after the choice was made. This finding suggests that the entire deception process may be tracked by the nose region. Furthermore, this nasal temperature modulation was negatively correlated with machiavellian traits, indicating that sympathetic/parasympathetic regulation is less important for manipulative individuals who may care less about the consequences of lie-related moral violations. Our results highlight a unique pattern of autonomic reactivity for spontaneous deception in ecological contexts.


Subject(s)
Body Temperature/physiology , Choice Behavior/physiology , Face/physiology , Adolescent , Adult , Aggression/physiology , Deception , Female , Humans , Male , Morals , Parasympathetic Nervous System/physiology , Sympathetic Nervous System/physiology , Young Adult
11.
J Neurophysiol ; 116(1): 153-8, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27121583

ABSTRACT

The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application.


Subject(s)
Aging/physiology , Aging/psychology , Beta Rhythm/physiology , Memory, Short-Term/physiology , Parietal Lobe/physiology , Transcranial Direct Current Stimulation , Acoustic Stimulation , Adolescent , Adult , Analysis of Variance , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Speech Perception/physiology , Young Adult
12.
J Neurosci ; 36(2): 268-79, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758821

ABSTRACT

Brain monitoring of errors in one's own and other's actions is crucial for a variety of processes, ranging from the fine-tuning of motor skill learning to important social functions, such as reading out and anticipating the intentions of others. Here, we combined immersive virtual reality and EEG recording to explore whether embodying the errors of an avatar by seeing it from a first-person perspective may activate the error monitoring system in the brain of an onlooker. We asked healthy participants to observe, from a first- or third-person perspective, an avatar performing a correct or an incorrect reach-to-grasp movement toward one of two virtual mugs placed on a table. At the end of each trial, participants reported verbally how much they embodied the avatar's arm. Ratings were maximal in first-person perspective, indicating that immersive virtual reality can be a powerful tool to induce embodiment of an artificial agent, even through mere visual perception and in the absence of any cross-modal boosting. Observation of erroneous grasping from a first-person perspective enhanced error-related negativity and medial-frontal theta power in the trials where human onlookers embodied the virtual character, hinting at the tight link between early, automatic coding of error detection and sense of embodiment. Error positivity was similar in 1PP and 3PP, suggesting that conscious coding of errors is similar for self and other. Thus, embodiment plays an important role in activating specific components of the action monitoring system when others' errors are coded as if they are one's own errors. SIGNIFICANCE STATEMENT: Detecting errors in other's actions is crucial for social functions, such as reading out and anticipating the intentions of others. Using immersive virtual reality and EEG recording, we explored how the brain of an onlooker reacted to the errors of an avatar seen from a first-person perspective. We found that mere observation of erroneous actions enhances electrocortical markers of error detection in the trials where human onlookers embodied the virtual character. Thus, the cerebral system for action monitoring is maximally activated when others' errors are coded as if they are one's own errors. The results have important implications for understanding how the brain can control the external world and thus creating new brain-computer interfaces.


Subject(s)
Brain Mapping , Cerebral Cortex/physiology , Interpersonal Relations , Movement/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Adult , Brain Waves , Electroencephalography , Evoked Potentials , Female , Fourier Analysis , Humans , Male , Observation , Photic Stimulation , Reaction Time/physiology , Time Factors , User-Computer Interface , Young Adult
13.
Sci Rep ; 5: 17139, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26602036

ABSTRACT

When we look at our hands we are immediately aware that they belong to us and we rarely doubt about the integrity, continuity and sense of ownership of our bodies. Here we explored whether the mere manipulation of the visual appearance of a virtual limb could influence the subjective feeling of ownership and the physiological responses (Skin Conductance Responses, SCRs) associated to a threatening stimulus approaching the virtual hand. Participants observed in first person perspective a virtual body having the right hand-forearm (i) connected by a normal wrist (Full-Limb) or a thin rigid wire connection (Wire) or (ii) disconnected because of a missing wrist (m-Wrist) or a missing wrist plus a plexiglass panel positioned between the hand and the forearm (Plexiglass). While the analysis of subjective ratings revealed that only the observation of natural full connected virtual limb elicited high levels of ownership, high amplitudes of SCRs were found also during observation of the non-natural, rigid wire connection condition. This result suggests that the conscious embodiment of an artificial limb requires a natural looking visual body appearance while implicit reactivity to threat may require physical body continuity, even non-naturally looking, that allows the implementation of protective reactions to threat.


Subject(s)
Emotions/physiology , Skin/metabolism , Visual Perception/physiology , Adult , Electric Conductivity , Hand/physiology , Humans , Logistic Models , Male , Photic Stimulation , Surveys and Questionnaires
14.
Front Behav Neurosci ; 9: 113, 2015.
Article in English | MEDLINE | ID: mdl-25999829

ABSTRACT

Anatomical, clinical, and neuroimaging evidence implicates the cerebellum in processing emotions and feelings. Moreover recent studies showed a cerebellar involvement in pathologies such as autism, schizophrenia and alexithymia, in which emotional processing have been found altered. However, cerebellar function in the modulation of emotional responses remains debated. In this study, emotions that are involved directly in decision-making were examined in 15 patients (six males; age range 17-60 years) affected by cerebellar damage and 15 well matched healthy controls. We used a gambling task, in which subjects' choices and evaluation of outcomes with regard to their anticipated and actual emotional impact were analyzed. Emotions, such as regret and relief, were elicited, based on the outcome of the unselected gamble. Interestingly, despite their ability to avoid regret in subsequent choices, patients affected by cerebellar lesions were significantly impaired in evaluating the feeling of regret subjectively. These results demonstrate that the cerebellum is involved in conscious recognizing of negative feelings caused by the sense of self-responsibility for an incorrect decision.

15.
Sci Rep ; 5: 8507, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25687636

ABSTRACT

During social interactions people automatically apply stereotypes in order to rapidly categorize others. Racial differences are among the most powerful cues that drive these categorizations and modulate our emotional and cognitive reactivity to others. We investigated whether implicit racial bias may also shape hand kinematics during the execution of realistic joint actions with virtual in- and out-group partners. Caucasian participants were required to perform synchronous imitative or complementary reach-to-grasp movements with avatars that had different skin color (white and black) but showed identical action kinematics. Results demonstrate that stronger visuo-motor interference (indexed here as hand kinematics differences between complementary and imitative actions) emerged: i) when participants were required to predict the partner's action goal in order to on-line adapt their own movements accordingly; ii) during interactions with the in-group partner, indicating the partner's racial membership modulates interactive behaviors. Importantly, the in-group/out-group effect positively correlated with the implicit racial bias of each participant. Thus visuo-motor interference during joint action, likely reflecting predictive embodied simulation of the partner's movements, is affected by cultural inter-individual differences.


Subject(s)
Interpersonal Relations , Prejudice , Adult , Analysis of Variance , Female , Humans , Male , Psychomotor Performance , Racism , Young Adult
16.
Soc Neurosci ; 9(6): 573-89, 2014.
Article in English | MEDLINE | ID: mdl-24979665

ABSTRACT

Although universal, lying is generally considered immoral behavior. Most neuroscience studies on lying sanction or instruct deceptive behaviors and thus might fail to acknowledge the significance of lie-related moral conflicts. By combining electroencephalogram (EEG) recordings with a novel paradigm in which participants decided freely whether to deceive another person, we have generated indices of the cognitive (reaction times and stimulus-locked event-related components) and moral (readiness potential and its correlations with deception-related personality traits) cost of spontaneous deception. Our data fail to support the consensus that deception is cognitively more demanding than truth telling, suggesting that spontaneous deception, as opposed to lying out of requirement, might not mandate additional cognitive workload. Interestingly, lying was associated with decreased motor readiness, an event-related potential (ERP) component that is linked to motor preparation of self-determined actions and modulated when we face moral dilemmas. Notably, this reduction was less extensive in manipulative participants and greater in those who cared highly about their impression management. Our study expands on previous findings on deception by associating a cortical marker of reduced preparation to act with individual differences in moral cognition.


Subject(s)
Brain/physiology , Deception , Interpersonal Relations , Personality/physiology , Psychomotor Performance/physiology , Adult , Cognition/physiology , Electroencephalography , Evoked Potentials , Female , Humans , Male , Morals , Reaction Time , Risk , Signal Processing, Computer-Assisted , Social Perception , Young Adult
17.
Eur J Neurosci ; 40(2): 2378-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24716878

ABSTRACT

Studies indicate that physical and social pain may share some mechanisms and neural correlates. Nothing is known, however, on whether the neural activity in the nociceptive system, as indexed by laser-evoked potentials (LEPs), is modified when suffering the consequences of a conspecific violating social norms. To explore this issue, we created an interaction scenario where participants could gain money by performing a time-estimation task. On each win-trial, another player connected online could arbitrarily decide to keep the participant's pay-off for him- or herself. Thus, participants knew that monetary loss could occur because of their own failure in performing the task or because of the inequitable behavior of another individual. Moreover, participants were asked to play for themselves or on behalf of a third party. In reality, the win/loss events were entirely decided by an ad hoc programmed computer. At the end of the interaction, participants reported if they believed the game-playing interaction was real. Results showed that the loss due to the opponent's inequitable behavior brought about a reduction both in pain intensity self-reports and in the amplitude of LEPs' components (i.e., N2, N2/P2, P2a, P2b). Importantly, both the behavioral and neurophysiological effects were found in the participants who believed their deserved payoff was stolen by their opponent. Furthermore, reduction of vertex components was present only when the inequitable behavior was directed toward the self. These results suggest that, far from being a private experience, pain perception might be modulated by the social saliency of interpersonal interactions.


Subject(s)
Cerebral Cortex/physiology , Laser-Evoked Potentials , Pain Perception , Token Economy , Adult , Female , Humans , Male
18.
Exp Brain Res ; 226(4): 473-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23503771

ABSTRACT

Performing online complementary motor adjustments is quintessential to joint actions since it allows interacting people to coordinate efficiently and achieve a common goal. We sought to determine whether, during dyadic interactions, signaling strategies and simulative processes are differentially implemented on the basis of the interactional role played by each partner. To this aim, we recorded the kinematics of the right hand of pairs of individuals who were asked to grasp as synchronously as possible a bottle-shaped object according to an imitative or complementary action schedule. Task requirements implied an asymmetric role assignment so that participants performed the task acting either as (1) Leader (i.e., receiving auditory information regarding the goal of the task with indications about where to grasp the object) or (2) Follower (i.e., receiving instructions to coordinate their movements with their partner's by performing imitative or complementary actions). Results showed that, when acting as Leader, participants used signaling strategies to enhance the predictability of their movements. In particular, they selectively emphasized kinematic parameters and reduced movement variability to provide the partner with implicit cues regarding the action to be jointly performed. Thus, Leaders make their movements more "communicative" even when not explicitly instructed to do so. Moreover, only when acting in the role of Follower did participants tend to imitate the Leader, even in complementary actions where imitation is detrimental to joint performance. Our results show that mimicking and signaling are implemented in joint actions according to the interactional role of the agent, which in turn is reflected in the kinematics of each partner.


Subject(s)
Cooperative Behavior , Fingers/innervation , Hand Strength/physiology , Imitative Behavior/physiology , Psychomotor Performance/physiology , Acoustic Stimulation , Adult , Analysis of Variance , Biomechanical Phenomena , Female , Form Perception/physiology , Goals , Hand/innervation , Humans , Male , Reaction Time/physiology , Wrist/innervation , Young Adult
19.
PLoS One ; 7(11): e50223, 2012.
Article in English | MEDLINE | ID: mdl-23209680

ABSTRACT

Prediction of "when" a partner will act and "what" he is going to do is crucial in joint-action contexts. However, studies on face-to-face interactions in which two people have to mutually adjust their movements in time and space are lacking. Moreover, while studies on passive observation have shown that somato-motor simulative processes are disrupted when the observed actor is perceived as an out-group or unfair individual, the impact of interpersonal perception on joint-actions has never been directly addressed. Here we explored this issue by comparing the ability of pairs of participants who did or did not undergo an interpersonal perception manipulation procedure to synchronise their reach-to-grasp movements during: i) a guided interaction, requiring pure temporal reciprocal coordination, and ii) a free interaction, requiring both time and space adjustments. Behavioural results demonstrate that while in neutral situations free and guided interactions are equally challenging for participants, a negative interpersonal relationship improves performance in guided interactions at the expense of the free interactive ones. This was paralleled at the kinematic level by the absence of movement corrections and by low movement variability in these participants, indicating that partners cooperating within a negative interpersonal bond executed the cooperative task on their own, without reciprocally adapting to the partner's motor behaviour. Crucially, participants' performance in the free interaction improved in the manipulated group during the second experimental session while partners became interdependent as suggested by higher movement variability and by the appearance of interference between the self-executed actions and those observed in the partner. Our study expands current knowledge about on-line motor interactions by showing that visuo-motor interference effects, mutual motor adjustments and motor-learning mechanisms are influenced by social perception.


Subject(s)
Hand Strength , Perception , Adult , Behavior , Biomechanical Phenomena , Communication , Humans , Joints , Male , Movement , Psychomotor Performance , Social Behavior , Social Perception , Software , Time Factors , Vision, Ocular
20.
Front Neurosci ; 6: 134, 2012.
Article in English | MEDLINE | ID: mdl-23060738

ABSTRACT

IN NEUROSCIENCE AND PSYCHOLOGY, AN INFLUENTIAL PERSPECTIVE DISTINGUISHES BETWEEN TWO KINDS OF BEHAVIORAL CONTROL: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...