Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 640: 125-133, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36502628

ABSTRACT

Rab GTPases are known for controlling intracellular membrane traffic in a GTP-dependent manner. Rab7l1, belonging to family of Rab GTPases, is important for both endosomal sorting and retrograde transport. In our previous study, we identified a novel role of Rab7l1 in phagosome maturation. However, its role in regulating macrophage innate-effector signaling and cytokine response is not clearly understood. In this study, we have demonstrated that upon treatment of Rab7l1-knocked-down (Rab7l1-KD) THP-1 macrophages with lipopolysaccharide (LPS) and Pam3CSK4 has led to higher induction levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) as compared to the control cells that received scrambled shRNA. Similar results were observed in Rab7l1-KD RAW 264.7 and Balb/c peritoneal macrophages. The phospho-ERK 1/2 (extracellular signal-regulated kinase 1/2) and phospho-p38 MAPK (mitogen-activated protein kinase) levels, known to be responsible for higher induction of TNF-α and IL-10 respectively, were higher in Rab7l1-KD THP-1 macrophages which also displayed higher nuclear translocation of p50/p65 nuclear factor kappa B (NF-κB) upon stimulation with LPS. Surface expression levels of toll-like receptor 2 (TLR2), TLR4 and CD14 receptors were higher in Rab7l1-KD THP-1 macrophages as compared to the control cells. However, intracellular levels of these receptors were lower in Rab7l1-KD THP-1 macrophages as compared to the control group. Together, our study suggests that Rab7l1 has a role in regulating MAPK signaling and cytokine effector responses in macrophages by regulating the surface expression of membrane receptors.


Subject(s)
Interleukin-10 , Toll-Like Receptors , rab GTP-Binding Proteins , Cytokines/metabolism , Interleukin-10/metabolism , Lipopolysaccharides , Macrophages/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Animals , Mice
2.
Sci Rep ; 10(1): 14621, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32883989

ABSTRACT

Endometrial hyperplasia (EH) is a condition where uterine endometrial glands show excessive proliferation of epithelial cells that may subsequently progress into endometrial cancer (EC). Modern lifestyle disorders such as obesity, hormonal changes and hyperinsulinemia are known risk factors for EH. A mouse strain that mimics most of these risk factors would be an ideal model to study the stage-wise progression of EH disease and develop suitable treatment strategies. Wdr13, an X-linked gene, is evolutionarily conserved and expressed in several tissues including uteri. In the present study, Wdr13 knockout female mice developed benign proliferative epithelium that progressed into EH at around one year of age accompanied by an increase in body weight and elevated estradiol levels. Molecular characterization studies revealed increase in ERα, PI3K and a decrease in PAX2 and ERß proteins in Wdr13 mutant mice uteri. Further, a decrease in the mRNA levels of cell cycle inhibitors, namely; p21 and cyclin G2 was seen. Leukocyte infiltration was observed in the uterine tissue of knockout mice at around 12 months of age. These physiological, molecular and pathological patterns were similar to those routinely seen in human EH disease and demonstrated the importance of WDR13 in mice uterine tissue. Thus, the genetic loss of Wdr13 in these mice led to mimicking of the human EH associated metabolic disorders making Wdr13 knockout female mice a potential animal model to study human endometrial hyperplasia.


Subject(s)
Cell Cycle Proteins/genetics , Endometrial Hyperplasia/genetics , Endometrium/metabolism , Uterus/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Proliferation , Disease Models, Animal , Endometrial Hyperplasia/metabolism , Endometrial Hyperplasia/pathology , Endometrium/pathology , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Female , Mice , Mice, Knockout , PAX2 Transcription Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Uterus/pathology
3.
Transgenic Res ; 28(5-6): 573-587, 2019 12.
Article in English | MEDLINE | ID: mdl-31599375

ABSTRACT

EchAMP, the tenth most abundant transcript expressed in the mammary gland of echidna, has in vitro broad-spectrum antibacterial effects. However, the effects of EchAMP on mastitis, a condition where inflammation is triggered following mammary gland infection, has not been investigated. To investigate the impact of EchAMP against mastitis, EchAMP transgenic mice were generated. In antibacterial assays, the whey fractions of milk from transgenic mice significantly reduced growth of Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa compared with whey fractions from wildtype mice. Furthermore, a mastitis model created by infecting mammary gland with these four bacterial strains displayed a significant reduction in bacterial load in transgenic mice injected with S. aureus and B. subtilis. On further confirmation, histomorphologic analysis showed absence of necrosis and cell infiltration in the mammary glands of transgenic mice. To understand the role of EchAMP against inflammation, we employed an LPS-injected mastitis mouse model. LPS is known to induce phopshorylation of NF-κB and MAPK pathways, which in turn activate downstream proinflammatory signaling mediators, to promote inflammation. In LPS-treated EchAMP transgenic mice, phosphorylation levels of NF-κB, p38 and ERK1/2 were significantly downregulated. Furthermore, in mammary gland of transgenic mice, there was a significant downregulation of mRNA levels of proinflammatory cytokines, namely TNF-α, IL-6 and IL-1ß. Taken together, these data suggest that EchAMP has an antiinflammatory response and is effective against S. aureus and B. subtilis. We suggest that EchAMP may be a potential prophylactic protein against mastitis in dairy animals by expressing this gene in their mammary gland.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Inflammation/genetics , Mastitis/genetics , Staphylococcal Infections/genetics , Animals , Female , Humans , Inflammation/chemically induced , Inflammation/microbiology , Inflammation/prevention & control , Interleukin-1beta/genetics , Interleukin-6/genetics , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/genetics , Mammary Glands, Animal/metabolism , Mastitis/chemically induced , Mastitis/microbiology , Mastitis/prevention & control , Mice , Mice, Transgenic/genetics , NF-kappa B/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Tachyglossidae/genetics , Tumor Necrosis Factor-alpha/genetics
4.
Asian Pac J Cancer Prev ; 19(1): 57-63, 2018 Jan 27.
Article in English | MEDLINE | ID: mdl-29373893

ABSTRACT

Extracellular matrix (ECM) plays an important role in the normal physiology of tissues and progression to disease. Earlier studies and our external microarray data analysis indicated that mammary matrix from involuting tissue showed upregulation of genes involved in ECM remodeling. The present study examines the fate of mammary and oral cancer cells grown in the ECM from lactating mammary gland. Our findings show that non-tumorigenic cells, MCF10A and DOK cells did not proliferate but the tumorigenic and metastatic cells, SCC25 and MDA-MB-231, underwent apoptosis when grown on mammary ECM isolated from lactating mice. In addition, the cytokinesis marker, CEP55, was repressed in the oral and breast cancer cells. In contrast, these cells proliferated normally on mammary ECM isolated from mice undergoing involution. External microarray data analysis of mammary tissue further revealed over expression (~16 fold) of QSOX1 gene, which promotes cellular quiescence, in lactating mammary gland. A recent study has indicated that QSOX1 overexpression in breast cancer cells led to reduced proliferation and tumorigenic properties. This extracellular protein in mammary ECM may be responsible for reduced cellular proliferation. The present study has shown that ECM from lactating mammary gland can regulate signals to oral and breast cancer cells to halt cell division. This preliminary observation provided insights into the potential role of ECM factors present in lactating mammary gland as therapeutic targets to control cancer cell division. This preliminary study is an attempt to understand not only the requirement of ECM remodeling factors essential for the growth and survival of cancer cells but also the factors present in the lactation matrix that simultaneously halts cell division and selectively inhibits the growth of cancer cells.

5.
Polymers (Basel) ; 10(7)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-30960615

ABSTRACT

Self-assembling peptides (SAPs) are a relatively new class of low molecular weight gelators which immobilize their solvent through the spontaneous formation of (fibrillar) nanoarchitectures. As peptides are derived from proteins, these hydrogels are ideal for use as biocompatible scaffolds for regenerative medicine. Importantly, due to the propensity of peptide sequences to act as signals in nature, they are easily functionalized to be cell instructive via the inclusion of bioactive epitopes. In nature, the fibronectin peptide sequence, arginine-glycine-aspartic acid (RGD) synergistically promotes the integrin α5ß1 mediated cell adhesion with another epitope, proline-histidine-serine-arginine-asparagine (PHSRN); however most functionalization strategies focus on RGD alone. Here, for the first time, we discuss the biomimetic inclusion of both these sequences within a self-assembled minimalistic peptide hydrogel. Here, based on our work with Fmoc-FRGDF (N-flourenylmethyloxycarbonyl phenylalanine-arginine-glycine-aspartic acid-phenylalanine), we show it is possible to present two epitopes simultaneously via the assembly of the epitopes by the coassembly of two SAPs, and compare this to the effectiveness of the signals in a single peptide; Fmoc-FRGDF: Fmoc-PHSRN (N-flourenylmethyloxycarbonyl-proline-histidine-serine-arginine-asparagine) and Fmoc-FRGDFPHSRN (N-flourenylmethyloxycarbonyl-phenylalanine-arginine-glycine-asparticacid-phenylalanine-proline-histidine-serine-arginine-asparagine). We show both produced self-supporting hydrogel underpinned by entangled nanofibrils, however, the stiffness of coassembled hydrogel was over two orders of magnitude higher than either Fmoc-FRGDF or Fmoc-FRGDFPHSRN alone. In-vitro three-dimensional cell culture of human mammary fibroblasts on the hydrogel mixed peptide showed dramatically improved adhesion, spreading and proliferation over Fmoc-FRGDF. However, the long peptide did not provide effective cell attachment. The results demonstrated the selective synergy effect of PHSRN with RGD is an effective way to augment the robustness and functionality of self-assembled bioscaffolds.

6.
Nanomedicine ; 12(5): 1397-407, 2016 07.
Article in English | MEDLINE | ID: mdl-26961467

ABSTRACT

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications is the nanostructured scaffolds formed by epitope presenting minimalist self-assembled peptides; these are bioactive on a cellular length scale, while presenting as an easily handled hydrogel. Here, we show that the assembly process can distribute an anti-inflammatory polysaccharide, fucoidan, localized to the nanofibers within the scaffold to create a biomaterial for cancer therapy. We show that it supports healthy cells, while inducing apoptosis in cancerous epithelial cells, as demonstrated by the significant down-regulation of gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications in local epithelial cancer immunotherapy and drug delivery.


Subject(s)
Apoptosis , Cytokines , Tissue Scaffolds , Biocompatible Materials , Drug Delivery Systems , Gene Expression Regulation , Humans , Hydrogels , Nanofibers , Neoplasms, Glandular and Epithelial
7.
Biopolymers ; 102(2): 197-205, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24488709

ABSTRACT

Nanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self-assembling peptides have emerged as an important tool in the development of functional (bio-)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems. Scaffolds based upon these nanofibrous matrices are promising materials for regenerative medicine as part of a new methodology in scaffold design where a "bottom-up" approach is used in order to simulate the native cellular milieu. Importantly, SAPs hold the potential to be bioactive through the presentation of biochemical and biomechanical signals in a context similar to the natural extracellular matrix, making them ideal targets for providing structural and chemical support in a cellular context. Here, we discuss a new methodology for the presentation of biologically relevant epitopes through their effective presentation on the surface of the nanofibers. Here, we demonstrate that these signals have a direct effect on the viability of cells within a three-dimensional matrix as compared with an unfunctionalized, yet mechanically and morphologically similar system.


Subject(s)
Cell Culture Techniques/methods , Peptides/pharmacology , Tissue Scaffolds/chemistry , Breast/cytology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Nanoparticles/ultrastructure , Peptides/chemistry , Rheology
8.
BMC Cell Biol ; 11: 93, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21122158

ABSTRACT

BACKGROUND: Anchorage independent growth is an important hallmark of oncogenic transformation. Previous studies have shown that when adhesion dependent fibroblasts were prevented from adhering to a substrate they underwent anoikis. In the present study we have demonstrated how anoikis resistant cells gain the transformation related properties with sequential selection of genes. We have proposed this process as a model system for selection of transformed cells from normal cells. RESULTS: This report demonstrates that some fibroblasts can survive during late stages of anoikis, at which time they exhibit transformation-associated properties such as in vitro colony formation in soft agar and in vivo subcutaneous tumour formation in nude mice. Cytogenetic characterisation of these cells revealed that they contained a t (2; 2) derivative chromosome and they have a selective survival advantage in non adherent conditions. Gene expression profile indicated that these cells over expressed genes related to hypoxia, glycolysis and tumor suppression/metastasis which could be helpful in their retaining a transformed phenotype. CONCLUSION: Our results reveal some new links between anoikis and cell transformation and they provide a reproducible model system which can potentially be useful to study multistage cancer and to identify new targets for drug development.


Subject(s)
Cell Adhesion , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Animals , Cell Line, Transformed , Cell Survival , Glycolysis/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Karyotyping , Mice , Rats , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...