Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Radiol Cardiothorac Imaging ; 4(2): e210260, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35506136

ABSTRACT

Purpose: To assess the association between nonalcoholic fatty liver disease (NAFLD) and quantitative atherosclerotic plaque at CT. Materials and Methods: In this post hoc analysis of the prospective Scottish Computed Tomography of the HEART trial (November 2010 to September 2014), hepatosteatosis and coronary artery calcium score were measured at noncontrast CT. Presence of stenoses, visually assessed high-risk plaque, and quantitative plaque burden were assessed at coronary CT angiography. Multivariable models were constructed to assess the impact of hepatosteatosis and cardiovascular risk factors on coronary artery disease. Results: Images from 1726 participants (mean age, 58 years ± 9 [SD]; 974 men) were included. Participants with hepatosteatosis (155 of 1726, 9%) had a higher body mass index, more hypertension and diabetes mellitus, and higher cardiovascular risk scores (P < .001 for all) compared with those without hepatosteatosis. They had increased coronary artery calcium scores (median, 43 Agatston units [AU] [interquartile range, 0-273] vs 19 AU [0-225], P = .046), more nonobstructive disease (48% vs 37%, P = .02), and higher low-attenuation plaque burden (5.11% [0-7.16] vs 4.07% [0-6.84], P = .04). However, these associations were not independent of cardiovascular risk factors. Over a median of 4.7 years, there was no evidence of a difference in myocardial infarction between those with and without hepatosteatosis (1.9% vs 2.4%, P = .92). Conclusion: Hepatosteatosis at CT was associated with an increased prevalence of coronary artery disease at CT, but this was not independent of the presence of cardiovascular risk factors.Keywords: CT, Cardiac, Nonalcoholic Fatty Liver Disease, Coronary Artery Disease, Hepatosteatosis, Plaque QuantificationClinical trial registration no. NCT01149590 Supplemental material is available for this article. © RSNA, 2022See also commentary by Abohashem and Blankstein in this issue.

2.
JACC Cardiovasc Imaging ; 15(6): 1078-1088, 2022 06.
Article in English | MEDLINE | ID: mdl-35450813

ABSTRACT

BACKGROUND: Pericoronary adipose tissue (PCAT) attenuation and low-attenuation noncalcified plaque (LAP) burden can both predict outcomes. OBJECTIVES: This study sought to assess the relative and additive values of PCAT attenuation and LAP to predict future risk of myocardial infarction. METHODS: In a post hoc analysis of the multicenter SCOT-HEART (Scottish Computed Tomography of the Heart) trial, the authors investigated the relationships between the future risk of fatal or nonfatal myocardial infarction and PCAT attenuation measured from coronary computed tomography angiography (CTA) using multivariable Cox regression models including plaque burden, obstructive coronary disease, and cardiac risk score (incorporating age, sex, diabetes, smoking, hypertension, hyperlipidemia, and family history). RESULTS: In 1,697 evaluable participants (age: 58 ± 10 years), there were 37 myocardial infarctions after a median follow-up of 4.7 years. Mean PCAT was -76 ± 8 HU and median LAP burden was 4.20% (IQR: 0%-6.86%). PCAT attenuation of the right coronary artery (RCA) was predictive of myocardial infarction (HR: 1.55; P = 0.017, per 1 SD increment) with an optimum threshold of -70.5 HU (HR: 2.45; P = 0.01). In multivariable analysis, adding PCAT-RCA of ≥-70.5 HU to an LAP burden of >4% (the optimum threshold for future myocardial infarction; HR: 4.87; P < 0.0001) led to improved prediction of future myocardial infarction (HR: 11.7; P < 0.0001). LAP burden showed higher area under the curve compared to PCAT attenuation for the prediction of myocardial infarction (AUC = 0.71 [95% CI: 0.62-0.80] vs AUC = 0.64 [95% CI: 0.54-0.74]; P < 0.001), with increased area under the curve when the 2 metrics are combined (AUC = 0.75 [95% CI: 0.65-0.85]; P = 0.037). CONCLUSION: Coronary CTA-defined LAP burden and PCAT attenuation have marked and complementary predictive value for the risk of fatal or nonfatal myocardial infarction.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Adipose Tissue/diagnostic imaging , Aged , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Humans , Middle Aged , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/etiology , Predictive Value of Tests
3.
J Arrhythm ; 38(2): 259-262, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35387145

ABSTRACT

It shows a pseudo -A-V-V-A response after stopping overdrive atrial pacing of a broad complex tachycardia.

4.
JACC Cardiovasc Imaging ; 15(7): 1274-1288, 2022 07.
Article in English | MEDLINE | ID: mdl-35183477

ABSTRACT

BACKGROUND: Aortic atherosclerosis represents an important contributor to ischemic stroke risk. Identifying patients with high-risk aortic atheroma could improve preventative treatment strategies for future ischemic stroke. OBJECTIVES: The purpose of this study was to investigate whether thoracic 18F-sodium fluoride positron emission tomography (PET) could improve the identification of patients at the highest risk of ischemic stroke. METHODS: In a post hoc observational cohort study, we quantified thoracic aortic and coronary 18F-sodium fluoride activity in 461 patients with stable cardiovascular disease undergoing PET combined with computed tomography (CT). Progression of atherosclerosis was assessed by change in aortic and coronary CT calcium volume. Clinical outcomes were determined by the occurrence of ischemic stroke and myocardial infarction. We compared the prognostic utility of 18F-sodium fluoride activity for predicting stroke to clinical risk scores and CT calcium quantification using survival analysis and multivariable Cox regression. RESULTS: After 12.7 ± 2.7 months, progression of thoracic aortic calcium volume correlated with baseline thoracic aortic 18F-sodium fluoride activity (n = 140; r = 0.31; P = 0.00016). In 461 patients, 23 (5%) patients experienced an ischemic stroke and 32 (7%) a myocardial infarction after 6.1 ± 2.3 years of follow-up. High thoracic aortic 18F-sodium fluoride activity was strongly associated with ischemic stroke (HR: 10.3 [95% CI: 3.1-34.8]; P = 0.00017), but not myocardial infarction (P = 0.40). Conversely, high coronary 18F-sodium fluoride activity was associated with myocardial infarction (HR: 4.8 [95% CI: 1.9-12.2]; P = 0.00095) but not ischemic stroke (P = 0.39). In a multivariable Cox regression model including imaging and clinical risk factors, thoracic aortic 18F-sodium fluoride activity was the only variable associated with ischemic stroke (HR: 8.19 [95% CI: 2.33-28.7], P = 0.0010). CONCLUSIONS: In patients with established cardiovascular disease, thoracic aortic 18F-sodium fluoride activity is associated with the progression of atherosclerosis and future ischemic stroke. Arterial 18F-sodium fluoride activity identifies localized areas of atherosclerotic disease activity that are directly linked to disease progression and downstream regional clinical atherothrombotic events. (DIAMOND-Dual Antiplatelet Therapy to Reduce Myocardial Injury [DIAMOND], NCT02110303; Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis [SALTIRE II], NCT02132026; Novel Imaging Approaches To Identify Unstable Coronary Plaques, NCT01749254; and Role of Active Valvular Calcification and Inflammation in Patients With Aortic Stenosis, NCT01358513).


Subject(s)
Aortic Valve Stenosis , Atherosclerosis , Cardiovascular Diseases , Myocardial Infarction , Plaque, Atherosclerotic , Stroke , Calcium , Fluorine Radioisotopes , Humans , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Predictive Value of Tests , Radiopharmaceuticals , Sodium Fluoride , Stroke/diagnostic imaging , Stroke/etiology
5.
J Nucl Cardiol ; 29(2): 741-749, 2022 04.
Article in English | MEDLINE | ID: mdl-33000405

ABSTRACT

OBJECTIVES: Cardiac MR is widely used to diagnose cardiac amyloid, but cannot differentiate AL and ATTR subtypes: an important distinction given their differing treatments and prognoses. We used PET/MR imaging to quantify myocardial uptake of 18F-fluoride in ATTR and AL amyloid patients, as well as participants with aortic stenosis and age/sex-matched controls. METHODS: In this prospective multicenter study, patients were recruited in Edinburgh and New York and underwent 18F-fluoride PET/MR imaging. Standardized volumes of interest were drawn in the septum and areas of late gadolinium enhancement to derive myocardial standardized uptake values (SUV) and tissue-to-background ratio (TBRMEAN) after correction for blood pool activity in the right atrium. RESULTS: 53 patients were scanned: 18 with cardiac amyloid (10 ATTR and 8 AL), 13 controls, and 22 with aortic stenosis. No differences in myocardial TBR values were observed between participants scanned in Edinburgh and New York. Mean myocardial TBRMEAN values in ATTR amyloid (1.13 ± 0.16) were higher than controls (0.84 ± 0.11, P = .0006), aortic stenosis (0.73 ± 0.12, P < .0001), and those with AL amyloid (0.96 ± 0.08, P = .01). TBRMEAN values within areas of late gadolinium enhancement provided discrimination between patients with ATTR (1.36 ± 0.23) and all other groups (e.g., AL [1.06 ± 0.07, P = .003]). A TBRMEAN threshold >1.14 in areas of LGE demonstrated 100% sensitivity (CI 72.25 to 100%) and 100% specificity (CI 67.56 to 100%) for ATTR compared to AL amyloid (AUC 1, P = .0004). CONCLUSION: Quantitative 18F-fluoride PET/MR imaging can distinguish ATTR amyloid from other similar phenotypes and holds promise in improving the diagnosis of this condition.


Subject(s)
Amyloidosis , Aortic Valve Stenosis , Cardiomyopathies , Amyloidosis/diagnostic imaging , Aortic Valve Stenosis/diagnostic imaging , Contrast Media , Fluorides , Gadolinium , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Prospective Studies
6.
Eur Heart J Cardiovasc Imaging ; 23(9): 1210-1221, 2022 08 22.
Article in English | MEDLINE | ID: mdl-34529050

ABSTRACT

AIMS: Coronary artery calcification is a marker of cardiovascular risk, but its association with qualitatively and quantitatively assessed plaque subtypes is unknown. METHODS AND RESULTS: In this post-hoc analysis, computed tomography (CT) images and 5-year clinical outcomes were assessed in SCOT-HEART trial participants. Agatston coronary artery calcium score (CACS) was measured on non-contrast CT and was stratified as zero (0 Agatston units, AU), minimal (1-9 AU), low (10-99 AU), moderate (100-399 AU), high (400-999 AU), and very high (≥1000 AU). Adverse plaques were investigated by qualitative (visual categorization of positive remodelling, low-attenuation plaque, spotty calcification, and napkin ring sign) and quantitative (calcified, non-calcified, low-attenuation, and total plaque burden; Autoplaque) assessments. Of 1769 patients, 36% had a zero, 9% minimal, 20% low, 17% moderate, 10% high, and 8% very high CACS. Amongst patients with a zero CACS, 14% had non-obstructive disease, 2% had obstructive disease, 2% had visually assessed adverse plaques, and 13% had low-attenuation plaque burden >4%. Non-calcified and low-attenuation plaque burden increased between patients with zero, minimal, and low CACS (P < 0.001), but there was no statistically significant difference between those with medium, high, and very high CACS. Myocardial infarction occurred in 41 patients, 10% of whom had zero CACS. CACS >1000 AU and low-attenuation plaque burden were the only predictors of myocardial infarction, independent of obstructive disease, and 10-year cardiovascular risk score. CONCLUSION: In patients with stable chest pain, zero CACS is associated with a good but not perfect prognosis, and CACS cannot rule out obstructive coronary artery disease, non-obstructive plaque, or adverse plaque phenotypes, including low-attenuation plaque.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Vascular Calcification , Calcium , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Humans , Myocardial Infarction/complications , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Predictive Value of Tests , Risk Assessment , Risk Factors , Tomography, X-Ray Computed , Vascular Calcification/complications , Vascular Calcification/diagnostic imaging
7.
Eur Heart J Cardiovasc Imaging ; 23(5): 717-726, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34172988

ABSTRACT

AIMS: Sex-specific thresholds of aortic valve calcification (AVC) have been proposed and validated in Caucasians. Thus, we aimed to validate their accuracy in Asians. METHODS AND RESULTS: Patients with calcific aortic stenosis (AS) from seven international centres were included. Exclusion criteria were ≥moderate aortic/mitral regurgitation and bicuspid valve. Optimal AVC and AVC-density sex-specific thresholds for severe AS were obtained in concordant grading and normal flow patients (CG/NF). We included 1263 patients [728 (57%) Asians, 573 (45%) women, 837 (66%) with CG/NF]. Mean gradient was 48 (26-64) mmHg and peak aortic velocity 4.5 (3.4-5.1) m/s. Optimal AVC thresholds were: 2145 Agatston Units (AU) in men and 1301 AU in women for Asians; and 1885 AU in men and 1129 AU in women for Caucasians. Overall, accuracy (% correctly classified) was high and comparable either using optimal or guidelines' thresholds (2000 AU in men, 1200 AU in women). However, accuracy was lower in Asian women vs. Caucasian women (76-78% vs. 94-95%; P < 0.001). Accuracy of AVC-density (476 AU/cm2 in men and 292 AU/cm2 in women) was comparable to absolute AVC in Caucasians (91% vs. 91%, respectively, P = 0.74), but higher than absolute AVC in Asians (87% vs. 81%, P < 0.001). There was no interaction between AVC/AVC-density and ethnicity (all P > 0.41) with regards to AS haemodynamic severity. CONCLUSION: AVC thresholds defining severe AS are comparable in Asian and Caucasian populations, and similar to those proposed in the guidelines. However, accuracy of AVC to identify severe AS in Asians (especially women) is sub-optimal. Therefore, the use of AVC-density is preferable in Asians.


Subject(s)
Aortic Valve Stenosis , Calcium , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Aortic Valve Stenosis/diagnostic imaging , Asian People , Calcinosis , Female , Humans , Male , Severity of Illness Index , Tomography, X-Ray Computed
8.
Struct Heart ; 6(1): 100027, 2022 Apr.
Article in English | MEDLINE | ID: mdl-37273477

ABSTRACT

Background: Sex-specific thresholds of computed tomography (CT)-derived aortic valve calcification (AVC) or AVC density (AVCd) to identify severe aortic stenosis (AS) have been established in populations that consisted mainly of Caucasians with a tricuspid aortic valve. The objective of this study was to evaluate the accuracy (i.e., sensitivity and specificity) of previously established thresholds to identify severe AS in patients with bicuspid aortic valve (BAV) and according to ethnicity: Caucasian vs. Asian. Methods: We built a multicenter registry of echocardiographic and CT data collected in BAV patients with at least mild AS and preserved left ventricular ejection fraction from 7 different centers. Anatomic severity of AS obtained by CT-derived AVC and AVCd was compared to hemodynamic severity of AS obtained by echocardiography. Results: Among 485 BAV patients (60% men, 73% Asians), the best thresholds of AVC and AVCd to identify severe AS in BAV patients were 2315 arbitrary units (AU) (sensitivity [Se]/specificity [Spe] = 82/78%) in men, 1103 AU (Se/Spe = 80/82%) in women, and 561 AU/cm2 (Se/Spe = 86/91%) in men, and 301 AU/cm2 (Se/Spe = 83/82%) in women, respectively. According to ethnicity, thresholds for severe AS in Caucasian patients were, respectively, in men and women: 2208 AU (Se/Spe = 83/83%) and 1230 AU (Se/Spe = 87/82%) for AVC and 474 AU/cm2 (Se/Spe = 88/83%) and 358 AU/cm2 (Se/Spe = 80/82%) for AVCd. In Asian patients, they were 2582 AU (Se/Spe = 76/78%) and 924 AU (Se/Spe = 84/80%) for AVC and 640 AU/cm2 (Se/Spe = 82/89%) and 255 AU/cm2 (Se/Spe = 86/80%) for AVCd. Conclusions: The optimal thresholds to identify hemodynamically severe AS in BAV patients are similar in Caucasians but appear to be higher in Asian men, compared with thresholds previously reported in tricuspid aortic valve patients. Nonetheless, the thresholds currently proposed in the guidelines have good accuracy and can be applied in BAV patients to confirm AS severity.

9.
JACC Cardiovasc Imaging ; 14(9): 1707-1720, 2021 09.
Article in English | MEDLINE | ID: mdl-34023273

ABSTRACT

OBJECTIVES: The authors explored the development and validation of machine-learning models for augmenting the echocardiographic grading of aortic stenosis (AS) severity. BACKGROUND: In AS, symptoms and adverse events develop secondarily to valvular obstruction and left ventricular decompensation. The current echocardiographic grading of AS severity focuses on the valve and is limited by diagnostic uncertainty. METHODS: Using echocardiography (ECHO) measurements (ECHO cohort, n = 1,052), we performed patient similarity analysis to derive high-severity and low-severity phenogroups of AS. We subsequently developed a supervised machine-learning classifier and validated its performance with independent markers of disease severity obtained using computed tomography (CT) (CT cohort, n = 752) and cardiovascular magnetic resonance (CMR) imaging (CMR cohort, n = 160). The classifier's prognostic value was further validated using clinical outcomes (aortic valve replacement [AVR] and death) observed in the ECHO and CMR cohorts. RESULTS: In 1,964 patients from the 3 multi-institutional cohorts, 1,346 (68%) subjects had either nonsevere or discordant AS severity. Machine learning identified 1,117 (57%) patients as having high-severity and 847 (43%) as having low-severity AS. High-severity patients in CT and CMR cohorts had higher valve calcium scores and left ventricular mass and fibrosis, respectively than the low-severity group. In the ECHO cohort, progression to AVR and progression to death in patients who did not receive AVR was faster in the high-severity group. Compared with the conventional classification of disease severity, machine-learning-based severity classification improved discrimination (integrated discrimination improvement: 0.07; 95% confidence interval: 0.02 to 0.12) and reclassification (net reclassification improvement: 0.17; 95% confidence interval: 0.11 to 0.23) for the outcome of AVR at 5 years. For both ECHO and CMR cohorts, we observed prognostic value of the machine-learning classifications for subgroups with asymptomatic, nonsevere or discordant AS. CONCLUSIONS: Machine learning can integrate ECHO measurements to augment the classification of disease severity in most patients with AS, with major potential to optimize the timing of AVR.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Humans , Machine Learning , Phenotype , Predictive Value of Tests , Severity of Illness Index
10.
JACC Cardiovasc Imaging ; 14(9): 1804-1814, 2021 09.
Article in English | MEDLINE | ID: mdl-33865779

ABSTRACT

OBJECTIVES: This study was designed to investigate whether coronary computed tomography angiography assessments of coronary plaque might explain differences in the prognosis of men and women presenting with chest pain. BACKGROUND: Important sex differences exist in coronary artery disease. Women presenting with chest pain have different risk factors, symptoms, prevalence of coronary artery disease and prognosis compared to men. METHODS: Within a multicenter randomized controlled trial, we explored sex differences in stenosis, adverse plaque characteristics (positive remodeling, low-attenuation plaque, spotty calcification, or napkin ring sign) and quantitative assessment of total, calcified, noncalcified and low-attenuation plaque burden. RESULTS: Of the 1,769 participants who underwent coronary computed tomography angiography, 772 (43%) were female. Women were more likely to have normal coronary arteries and less likely to have adverse plaque characteristics (p < 0.001 for all). They had lower total, calcified, noncalcified, and low-attenuation plaque burdens (p < 0.001 for all) and were less likely to have a low-attenuation plaque burden >4% (41% vs. 59%; p < 0.001). Over a median follow-up of 4.7 years, myocardial infarction (MI) occurred in 11 women (1.4%) and 30 men (3%). In those who had MI, women had similar total, noncalcified, and low-attenuation plaque burdens as men, but men had higher calcified plaque burden. Low-attenuation plaque burden predicted MI (hazard ratio: 1.60; 95% confidence interval: 1.10 to 2.34; p = 0.015), independent of calcium score, obstructive disease, cardiovascular risk score, and sex. CONCLUSIONS: Women presenting with stable chest pain have less atherosclerotic plaque of all subtypes compared to men and a lower risk of subsequent MI. However, quantitative low-attenuation plaque is as strong a predictor of subsequent MI in women as in men. (Scottish Computed Tomography of the HEART Trial [SCOT-HEART]; NCT01149590).


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Vessels/diagnostic imaging , Female , Humans , Male , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/epidemiology , Predictive Value of Tests , Risk Factors
11.
Circulation ; 143(25): 2418-2427, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33913339

ABSTRACT

BACKGROUND: Valvular calcification is central to the pathogenesis and progression of aortic stenosis, with preclinical and observational studies suggesting that bone turnover and osteoblastic differentiation of valvular interstitial cells are important contributory mechanisms. We aimed to establish whether inhibition of these pathways with denosumab or alendronic acid could reduce disease progression in aortic stenosis. METHODS: In a single-center, parallel group, double-blind randomized controlled trial, patients >50 years of age with calcific aortic stenosis (peak aortic jet velocity >2.5 m/s) were randomized 2:1:2:1 to denosumab (60 mg every 6 months), placebo injection, alendronic acid (70 mg once weekly), or placebo capsule. Participants underwent serial assessments with Doppler echocardiography, computed tomography aortic valve calcium scoring, and 18F-sodium fluoride positron emission tomography and computed tomography. The primary end point was the calculated 24-month change in aortic valve calcium score. RESULTS: A total of 150 patients (mean age, 72±8 years; 21% women) with calcific aortic stenosis (peak aortic jet velocity, 3.36 m/s [2.93-3.82 m/s]; aortic valve calcium score, 1152 AU [655-2065 AU]) were randomized and received the allocated trial intervention: denosumab (n=49), alendronic acid (n=51), and placebo (injection n=25, capsule n=25; pooled for analysis). Serum C-terminal telopeptide, a measure of bone turnover, halved from baseline to 6 months with denosumab (0.23 [0.18-0.33 µg/L] to 0.11 µg/L [0.08-0.17 µg/L]) and alendronic acid (0.20 [0.14-0.28 µg/L] to 0.09 µg/L [0.08-0.13 µg/L]) but was unchanged with placebo (0.23 [0.17-0.30 µg/L] to 0.26 µg/L [0.16-0.31 µg/L]). There were no differences in 24-month change in aortic valve calcium score between denosumab and placebo (343 [198-804 AU] versus 354 AU [76-675 AU]; P=0.41) or alendronic acid and placebo (326 [138-813 AU] versus 354 AU [76-675 AU]; P=0.49). Similarly, there were no differences in change in peak aortic jet velocity or 18F-sodium fluoride aortic valve uptake. CONCLUSIONS: Neither denosumab nor alendronic acid affected progression of aortic valve calcification in patients with calcific aortic stenosis. Alternative pathways and mechanisms need to be explored to identify disease-modifying therapies for the growing population of patients with this potentially fatal condition. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02132026.


Subject(s)
Alendronate/therapeutic use , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/drug therapy , Bone Density Conservation Agents/therapeutic use , Denosumab/therapeutic use , Disease Progression , Aged , Aged, 80 and over , Aortic Valve Stenosis/metabolism , Double-Blind Method , Female , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Treatment Outcome , Vascular Calcification/diagnostic imaging , Vascular Calcification/drug therapy , Vascular Calcification/metabolism
12.
Heart ; 107(23): 1905-1911, 2021 12.
Article in English | MEDLINE | ID: mdl-33514522

ABSTRACT

OBJECTIVES: Non-contrast CT aortic valve calcium scoring ignores the contribution of valvular fibrosis in aortic stenosis. We assessed aortic valve calcific and non-calcific disease using contrast-enhanced CT. METHODS: This was a post hoc analysis of 164 patients (median age 71 (IQR 66-77) years, 78% male) with aortic stenosis (41 mild, 89 moderate, 34 severe; 7% bicuspid) who underwent echocardiography and contrast-enhanced CT as part of imaging studies. Calcific and non-calcific (fibrosis) valve tissue volumes were quantified and indexed to annulus area, using Hounsfield unit thresholds calibrated against blood pool radiodensity. The fibrocalcific ratio assessed the relative contributions of valve fibrosis and calcification. The fibrocalcific volume (sum of indexed non-calcific and calcific volumes) was compared with aortic valve peak velocity and, in a subgroup, histology and valve weight. RESULTS: Contrast-enhanced CT calcium volumes correlated with CT calcium score (r=0.80, p<0.001) and peak aortic jet velocity (r=0.55, p<0.001). The fibrocalcific ratio decreased with increasing aortic stenosis severity (mild: 1.29 (0.98-2.38), moderate: 0.87 (1.48-1.72), severe: 0.47 (0.33-0.78), p<0.001) while the fibrocalcific volume increased (mild: 109 (75-150), moderate: 191 (117-253), severe: 274 (213-344) mm3/cm2). Fibrocalcific volume correlated with ex vivo valve weight (r=0.72, p<0.001). Compared with the Agatston score, fibrocalcific volume demonstrated a better correlation with peak aortic jet velocity (r=0.59 and r=0.67, respectively), particularly in females (r=0.38 and r=0.72, respectively). CONCLUSIONS: Contrast-enhanced CT assessment of aortic valve calcific and non-calcific volumes correlates with aortic stenosis severity and may be preferable to non-contrast CT when fibrosis is a significant contributor to valve obstruction.


Subject(s)
Aortic Valve Stenosis/diagnosis , Aortic Valve/diagnostic imaging , Calcinosis/diagnosis , Contrast Media/pharmacology , Multidetector Computed Tomography/methods , Aged , Disease Progression , Female , Fibrosis/diagnosis , Humans , Male , Middle Aged , Severity of Illness Index
13.
J Nucl Cardiol ; 28(5): 1-12, 2021 10.
Article in English | MEDLINE | ID: mdl-31792913

ABSTRACT

BACKGROUND: 18F-Fluoride uptake denotes calcification activity in aortic stenosis and atherosclerosis. While PET/MR has several advantages over PET/CT, attenuation correction of PET/MR data is challenging, limiting cardiovascular application. We compared PET/MR and PET/CT assessments of 18F-fluoride uptake in the aortic valve and coronary arteries. METHODS AND RESULTS: 18 patients with aortic stenosis or recent myocardial infarction underwent 18F-fluoride PET/CT followed immediately by PET/MR. Valve and coronary 18F-fluoride uptake were evaluated independently. Both standard (Dixon) and novel radial GRE) MR attenuation correction (AC) maps were validated against PET/CT with results expressed as tissue-to-background ratios (TBRs). Visually, aortic valve 18F-fluoride uptake was similar on PET/CT and PET/MR. TBRMAX values were comparable with radial GRE AC (PET/CT 1.55±0.33 vs. PET/MR 1.58 ± 0.34, P = 0.66; 95% limits of agreement - 27% to + 25%) but performed less well with Dixon AC (1.38 ± 0.44, P = 0.06; bias (-)14%; 95% limits of agreement - 25% to + 53%). In native coronaries, 18F-fluoride uptake was similar on PET/MR to PET/CT regardless of AC approach. PET/MR identified 28/29 plaques identified on PET/CT; however, stents caused artifact on PET/MR making assessment of 18F-fluoride uptake challenging. CONCLUSION: Cardiovascular PET/MR demonstrates good visual and quantitative agreement with PET/CT. However, PET/MR is hampered by stent-related artifacts currently limiting clinical application.


Subject(s)
Fluorodeoxyglucose F18/therapeutic use , Magnetic Resonance Angiography/standards , Positron Emission Tomography Computed Tomography/standards , Aged , Aortic Valve Stenosis/diagnostic imaging , Female , Fluorodeoxyglucose F18/administration & dosage , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Angiography/statistics & numerical data , Male , Middle Aged , Myocardial Infarction/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/statistics & numerical data , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/therapeutic use
14.
Eur Heart J Cardiovasc Imaging ; 22(3): 262-270, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33306104

ABSTRACT

AIMS: Valvular heart disease can be identified by calcification on coronary computed tomography angiography (CCTA) and has been associated with adverse clinical outcomes. We assessed aortic and mitral valve calcification in patients presenting with stable chest pain and their association with cardiovascular risk factors, coronary artery disease, and cardiovascular outcomes. METHODS AND RESULTS: In 1769 patients (58 ± 9 years, 56% male) undergoing CCTA for stable chest pain, aortic and mitral valve calcification were quantified using Agatston score. Aortic valve calcification was present in 241 (14%) and mitral calcification in 64 (4%). Independent predictors of aortic valve calcification were age, male sex, hypertension, diabetes mellitus, and cerebrovascular disease, whereas the only predictor of mitral valve calcification was age. Patients with aortic and mitral valve calcification had higher coronary artery calcium scores and more obstructive coronary artery disease. The composite endpoint of cardiovascular mortality, non-fatal myocardial infarction, or non-fatal stroke was higher in those with aortic [hazard ratio (HR) 2.87; 95% confidence interval (CI) 1.60-5.17; P < 0.001] or mitral (HR 3.50; 95% CI 1.47-8.07; P = 0.004) valve calcification, but this was not independent of coronary artery calcification or obstructive coronary artery disease. CONCLUSION: Aortic and mitral valve calcification occurs in one in six patients with stable chest pain undergoing CCTA and is associated with concomitant coronary atherosclerosis. Whilst valvular calcification is associated with a higher risk of cardiovascular events, this was not independent of the burden of coronary artery disease.


Subject(s)
Calcinosis , Coronary Artery Disease , Aortic Valve/diagnostic imaging , Calcinosis/diagnostic imaging , Calcinosis/epidemiology , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Female , Humans , Male , Prevalence , Risk Factors
15.
Heart ; 106(24): 1906-1913, 2020 12.
Article in English | MEDLINE | ID: mdl-33020228

ABSTRACT

OBJECTIVE: CT quantification of aortic valve calcification (CT-AVC) is useful in the assessment of aortic stenosis severity. Our objective was to assess its ability to track aortic stenosis progression compared with echocardiography. METHODS: Subjects were recruited in two cohorts: (1) a reproducibility cohort where patients underwent repeat CT-AVC or echocardiography within 4 weeks and (2) a disease progression cohort where patients underwent annual CT-AVC and/or echocardiography. Cohen's d-statistic (d) was computed from the ratio of annualised progression and measurement repeatability and used to estimate group sizes required to detect annualised changes in CT-AVC and echocardiography. RESULTS: A total of 33 (age 71±8) and 81 participants (age 72±8) were recruited to the reproducibility and progression cohorts, respectively. Ten CT scans (16%) were excluded from the progression cohort due to non-diagnostic image quality. Scan-rescan reproducibility was excellent for CT-AVC (limits of agreement -12% to 10 %, intraclass correlation (ICC) 0.99), peak velocity (-7% to +17%; ICC 0.92) mean gradient (-25% to 27%, ICC 0.96) and dimensionless index (-11% to +15%; ICC 0.98). Repeat measurements of aortic valve area (AVA) were less reliable (-44% to +28%, ICC 0.85).CT-AVC progressed by 152 (65-375) AU/year. For echocardiography, the median annual change in peak velocity was 0.1 (0.0-0.3) m/s/year, mean gradient 2 (0-4) mm Hg/year and AVA -0.1 (-0.2-0.0) cm2/year. Cohen's d-statistic was more than double for CT-AVC (d=3.12) than each echocardiographic measure (peak velocity d=0.71 ; mean gradient d=0.66; AVA d=0.59, dimensionless index d=1.41). CONCLUSION: CT-AVC is reproducible and demonstrates larger increases over time normalised to measurement repeatability compared with echocardiographic measures.


Subject(s)
Aortic Valve Stenosis/diagnosis , Aortic Valve/diagnostic imaging , Calcium/metabolism , Multidetector Computed Tomography/methods , Aged , Aortic Valve/metabolism , Aortic Valve Stenosis/metabolism , Echocardiography, Doppler , Female , Follow-Up Studies , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Severity of Illness Index
17.
Circulation ; 141(18): 1452-1462, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32174130

ABSTRACT

BACKGROUND: The future risk of myocardial infarction is commonly assessed using cardiovascular risk scores, coronary artery calcium score, or coronary artery stenosis severity. We assessed whether noncalcified low-attenuation plaque burden on coronary CT angiography (CCTA) might be a better predictor of the future risk of myocardial infarction. METHODS: In a post hoc analysis of a multicenter randomized controlled trial of CCTA in patients with stable chest pain, we investigated the association between the future risk of fatal or nonfatal myocardial infarction and low-attenuation plaque burden (% plaque to vessel volume), cardiovascular risk score, coronary artery calcium score or obstructive coronary artery stenoses. RESULTS: In 1769 patients (56% male; 58±10 years) followed up for a median 4.7 (interquartile interval, 4.0-5.7) years, low-attenuation plaque burden correlated weakly with cardiovascular risk score (r=0.34; P<0.001), strongly with coronary artery calcium score (r=0.62; P<0.001), and very strongly with the severity of luminal coronary stenosis (area stenosis, r=0.83; P<0.001). Low-attenuation plaque burden (7.5% [4.8-9.2] versus 4.1% [0-6.8]; P<0.001), coronary artery calcium score (336 [62-1064] versus 19 [0-217] Agatston units; P<0.001), and the presence of obstructive coronary artery disease (54% versus 25%; P<0.001) were all higher in the 41 patients who had fatal or nonfatal myocardial infarction. Low-attenuation plaque burden was the strongest predictor of myocardial infarction (adjusted hazard ratio, 1.60 (95% CI, 1.10-2.34) per doubling; P=0.014), irrespective of cardiovascular risk score, coronary artery calcium score, or coronary artery area stenosis. Patients with low-attenuation plaque burden greater than 4% were nearly 5 times more likely to have subsequent myocardial infarction (hazard ratio, 4.65; 95% CI, 2.06-10.5; P<0.001). CONCLUSIONS: In patients presenting with stable chest pain, low-attenuation plaque burden is the strongest predictor of fatal or nonfatal myocardial infarction. These findings challenge the current perception of the supremacy of current classical risk predictors for myocardial infarction, including stenosis severity. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01149590.


Subject(s)
Angina, Stable/etiology , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Myocardial Infarction/etiology , Plaque, Atherosclerotic , Vascular Calcification/diagnostic imaging , Aged , Angina, Stable/diagnosis , Angina, Stable/mortality , Coronary Artery Disease/complications , Coronary Artery Disease/mortality , Coronary Stenosis/complications , Coronary Stenosis/mortality , Female , Heart Disease Risk Factors , Humans , Male , Middle Aged , Myocardial Infarction/diagnosis , Myocardial Infarction/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Scotland , Time Factors , Vascular Calcification/complications , Vascular Calcification/mortality
18.
Eur Heart J ; 41(13): 1337-1345, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31883330

ABSTRACT

AIMS: The relative benefits of computed tomography coronary angiography (CTCA)-guided management in women and men with suspected angina due to coronary heart disease (CHD) are uncertain. METHODS AND RESULTS: In this post hoc analysis of an open-label parallel-group multicentre trial, we recruited 4146 patients referred for assessment of suspected angina from 12 cardiology clinics across the UK. We randomly assigned (1:1) participants to standard care alone or standard care plus CTCA. Fewer women had typical chest pain symptoms (n = 582, 32.0%) when compared with men (n = 880, 37.9%; P < 0.001). Amongst the CTCA-guided group, more women had normal coronary arteries [386 (49.6%) vs. 263 (26.2%)] and less obstructive CHD [105 (11.5%) vs. 347 (29.8%)]. A CTCA-guided strategy resulted in more women than men being reclassified as not having CHD {19.2% vs. 13.1%; absolute risk difference, 5.7 [95% confidence interval (CI): 2.7-8.7, P < 0.001]} or having angina due to CHD [15.0% vs. 9.0%; absolute risk difference, 5.6 (2.3-8.9, P = 0.001)]. After a median of 4.8 years follow-up, CTCA-guided management was associated with similar reductions in the risk of CHD death or non-fatal myocardial infarction in women [hazard ratio (HR) 0.50, 95% CI 0.24-1.04], and men (HR 0.63, 95% CI 0.42-0.95; Pinteraction = 0.572). CONCLUSION: Following the addition of CTCA, women were more likely to be found to have normal coronary arteries than men. This led to more women being reclassified as not having CHD, resulting in more downstream tests and treatments being cancelled. There were similar prognostic benefits of CTCA for women and men.


Subject(s)
Coronary Artery Disease , Coronary Disease , Angina Pectoris/epidemiology , Chest Pain/epidemiology , Chest Pain/etiology , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Coronary Disease/complications , Coronary Disease/diagnostic imaging , Female , Humans , Male , Predictive Value of Tests
19.
JACC Cardiovasc Imaging ; 13(7): 1549-1560, 2020 07.
Article in English | MEDLINE | ID: mdl-31422134

ABSTRACT

OBJECTIVES: The goal of this study was to determine whether ticagrelor reduces high-sensitivity troponin I concentrations in patients with established coronary artery disease and high-risk coronary plaque. BACKGROUND: High-risk coronary atherosclerotic plaque is associated with higher plasma troponin concentrations suggesting ongoing myocardial injury that may be a target for dual antiplatelet therapy. METHODS: In a randomized, double-blind, placebo-controlled trial, patients with multivessel coronary artery disease underwent coronary 18F-fluoride positron emission tomography/coronary computed tomography scanning and measurement of high-sensitivity cardiac troponin I. Patients were randomized (1:1) to receive ticagrelor 90 mg twice daily or matched placebo. The primary endpoint was troponin I concentration at 30 days in patients with increased coronary 18F-fluoride uptake. RESULTS: In total, 202 patients were randomized to treatment, and 191 met the pre-specified criteria for inclusion in the primary analysis. In patients with increased coronary 18F-fluoride uptake (120 of 191), there was no evidence that ticagrelor had an effect on plasma troponin concentrations at 30 days (ratio of geometric means for ticagrelor vs. placebo: 1.11; 95% confidence interval: 0.90 to 1.36; p = 0.32). Over 1 year, ticagrelor had no effect on troponin concentrations in patients with increased coronary 18F-fluoride uptake (ratio of geometric means: 0.86; 95% confidence interval: 0.63 to 1.17; p = 0.33). CONCLUSIONS: Dual antiplatelet therapy with ticagrelor did not reduce plasma troponin concentrations in patients with high-risk coronary plaque, suggesting that subclinical plaque thrombosis does not contribute to ongoing myocardial injury in this setting. (Dual Antiplatelet Therapy to Reduce Myocardial Injury [DIAMOND]; NCT02110303).


Subject(s)
Percutaneous Coronary Intervention , Plaque, Atherosclerotic , Ticagrelor/therapeutic use , Coronary Vessels , Humans , Male , Plaque, Atherosclerotic/drug therapy , Platelet Aggregation Inhibitors , Predictive Value of Tests , Prospective Studies , Tomography, X-Ray Computed , Treatment Outcome
20.
J Cardiovasc Comput Tomogr ; 14(1): 3-11, 2020.
Article in English | MEDLINE | ID: mdl-31377034

ABSTRACT

OBJECTIVES: To assess the prognostic implications of standardized reporting systems for coronary computed tomography angiography (CCTA) and coronary artery calcium scores (CACS) in patients with stable chest pain. BACKGROUND: The Coronary Artery Disease Reporting And Data System (CAD-RADS) and Coronary Artery Calcium - Data and Reporting System (CAC-DRS) aim to improve communication of CACS and CCTA results, but its influence on prognostication is unknown. METHODS: Images from 1769 patients who underwent CCTA as part of the Scottish Computed Tomography of the HEART (SCOT-HEART) multi-center randomized controlled trial were assessed. CACS were classified as CAC-DRS 0 to 3 based on Agatston scores. CCTA were classified as CAD-RADS 0 to 5 based on the most clinically relevant finding per patient. The primary outcome was the five-year events of fatal and non-fatal myocardial infarction. RESULTS: Patients had a mean age of 58 ±â€¯10 years and 56% were male. CAC-DRS 0, 1, 2 and 3 occurred in 642 (36%), 510 (29%), 239 (14%) and 379 (21%) patients respectively. CAD-RADS 0, 1, 2, 3, 4A, 4B and 5 occurred in 622 (35%), 327 (18%), 211 (12%), 165 (9%), 221 (12%), 42 (2%) and 181 (10%) patients respectively. Patients classified as CAC-DRS 3 were at an increased risk of fatal or non-fatal myocardial infarction compared to CAC-DRS 0 patients (hazard ratio (HR) 9.41; 95% confidence interval (CI) 3.24, 27.31; p < 0.001). Patients with higher CAD-RADS categories were at an increased risk of fatal or non-fatal myocardial infarction, with patients classified as CAD-RADS 4B at the highest risk compared to CAD-RADS 0 patients (HR 19.14; 95% CI 4.28, 85.53; p < 0.001). CONCLUSION: Patients with higher CAC-DRS and CAD-RADS scores were at increased risk of subsequent fatal and non-fatal myocardial infarction. This confirms that the classification provides additional prognostic discrimination for future coronary heart disease events.


Subject(s)
Angina, Stable/diagnostic imaging , Computed Tomography Angiography/standards , Coronary Angiography/standards , Coronary Artery Disease/diagnostic imaging , Radiology Information Systems/standards , Vascular Calcification/diagnostic imaging , Aged , Angina, Stable/mortality , Angina, Stable/therapy , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , Female , Humans , Incidence , Male , Middle Aged , Myocardial Infarction/diagnosis , Myocardial Infarction/mortality , Myocardial Infarction/therapy , Predictive Value of Tests , Prognosis , Randomized Controlled Trials as Topic , Reproducibility of Results , Retrospective Studies , Risk Assessment , Risk Factors , Scotland/epidemiology , Severity of Illness Index , Time Factors , Vascular Calcification/mortality , Vascular Calcification/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...