Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056773

ABSTRACT

Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.


Subject(s)
Biotechnology , Chalcogens/chemistry , Escherichia coli , Nanoparticles/chemistry , Nanotechnology , Sulfur/chemistry , Biomass , Biotechnology/methods , Chemical Phenomena , Escherichia coli/metabolism , Metal Nanoparticles/chemistry , Nanotechnology/methods , Quantum Dots
2.
Sci Rep ; 8(1): 5106, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29572495

ABSTRACT

A microwave reaction to convert 99 ± 1% of Ag+ to silver nanoparticles (AgNPs) of size <10 nm within 4.5 min with a specific production rate and energy input of 5.75 mg AgNP L-1 min-1 and 5.45 W mL-1 reaction volume was developed. The glucose reduced and food grade starch stabilized particles remained colloidally stable with less than a 4% change in the surface plasmon resonance band at 425-430 nm at t > 300 days. TEM determined the size of AgNPs, while TEM-EDS and XRD verified elemental composition. The conversion was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and thermal gravimetric analysis (TGA). Additionally, the required silver to starch input mass ratio, 1.0:1.3, to produce colloidally stabilized AgNPs is significantly reduced compared to previous studies. The antibacterial activity of freshly prepared AgNPs and AgNPs aged >300 days was demonstrated against E. coli as determined by agar diffusion assays. This result, corroborated by spectrophotometric and TEM measurements, indicates long-term colloidal stability of the product. Thus, this study sustainably produced antibacterial AgNPs from minimal inputs. In the broader context, the current work has quantified a sustainable platform technology to produce sphere-like inorganic nanoparticles with antimicrobial properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...