Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Technol ; 51(19): 11115-11125, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28936873

ABSTRACT

Organoarsenicals such as the methylarsenical methylarsenate (MAs(V)) and aromatic arsenicals including roxarsone (4-hydroxy-3-nitrobenzenearsenate or Rox(V)) have been extensively used as an herbicide and growth enhancers in animal husbandry, respectively. They undergo environmental degradation to more toxic inorganic arsenite (As(III)) that contaminates crops and drinking water. We previously identified a bacterial gene (arsI) responsible for aerobic demethylation of methylarsenite (MAs(III)). The gene product, ArsI, is an Fe(II)-dependent extradiol dioxygenase that cleaves the carbon-arsenic (C-As) bond in MAs(III) and in trivalent aromatic arsenicals. The objective of this study was to elucidate the ArsI mechanism. Using isothermal titration calorimetry, we determined the dissociation constants and ligand-to-protein stoichiometry of ArsI for Fe(II), MAs(III), and aromatic phenylarsenite. Using a combination of methods including chemical modification, site-directed mutagenesis, and fluorescent spectroscopy, we demonstrated that amino acid residues predicted to participate in Fe(II)-binding (His5-His62-Glu115) and substrate binding (Cys96-Cys97) are involved in catalysis. Finally, the products of Rox(III) degradation were identified as As(III) and 2-nitrohydroquinone, demonstrating that ArsI is a dioxygenase that incorporates one oxygen atom from dioxygen into the carbon and the other to the arsenic to catalyze cleavage of the C-As bond. These results augment our understanding of the mechanism of this novel C-As lyase.


Subject(s)
Arsenic , Carbon , Lyases , Animals , Arsenicals , Roxarsone
2.
J Neuroimmune Pharmacol ; 12(3): 371-388, 2017 09.
Article in English | MEDLINE | ID: mdl-28444557

ABSTRACT

There is growing evidence that Zika virus (ZIKV) infection is linked with activation of Guillan-Barré syndrome (GBS) in adults infected with the virus and microcephaly in infants following maternal infection. With the recent outpour in publications by numerous research labs, the association between microcephaly in newborns and ZIKV has become very apparent in which large numbers of viral particles were found in the central nervous tissue of an electively aborted microcephalic ZIKV-infected fetus. However, the underlying related mechanisms remain poorly understood. Thus, development of ZIKV-infected animal models are urgently required. The need to develop drugs and vaccines of high efficacy along with efficient diagnostic tools for ZIKV treatment and management raised the demand for a very selective animal model for exploring ZIKV pathogenesis and related mechanisms. In this review, we describe recent advances in animal models developed for studying ZIKV pathogenesis and evaluating potential interventions against human infection, including during pregnancy. The current research directions and the scientific challenges ahead in developing effective vaccines and therapeutics are also discussed.


Subject(s)
Disease Models, Animal , Zika Virus Infection , Animals , Female , Humans , Microcephaly/virology , Pregnancy
3.
Metallomics ; 8(10): 1047-1055, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27730229

ABSTRACT

Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle.


Subject(s)
Anti-Bacterial Agents/metabolism , Arsenicals/metabolism , Methyltransferases/metabolism , Amino Acid Sequence , Animals , Biotransformation , Humans , Methylation , Methyltransferases/chemistry , Models, Molecular , Sequence Alignment
4.
J Mol Biol ; 428(11): 2462-2473, 2016 06 05.
Article in English | MEDLINE | ID: mdl-27107642

ABSTRACT

Arsenic is a ubiquitous and carcinogenic environmental element that enters the biosphere primarily from geochemical sources, but also through anthropogenic activities. Microorganisms play an important role in the arsenic biogeochemical cycle by biotransformation of inorganic arsenic into organic arsenicals and vice versa. ArsI is a microbial non-heme, ferrous-dependent dioxygenase that transforms toxic methylarsenite [MAs(III)] to less toxic and carcinogenic inorganic arsenite [As(III)] by C-As bond cleavage. An ArsI ortholog, TcArsI, from the thermophilic bacterium Thermomonospora curvata was expressed, purified, and crystallized. The structure was solved in both the apo form and with Ni(II), Co(II), or Fe(III). The MAs(III) binding site is a vicinal cysteine pair in a flexible loop. A structure with the loop occupied with ß-mercaptoethanol mimics binding of MAs(III). The structure of a mutant protein (Y100H/V102F) was solved in two different crystal forms with two other orientations of the flexible loop. These results suggest that a loop-gating mechanism controls the catalytic reaction. In the ligand-free open state, the loop is exposed to solvent, where it can bind MAs(III). The loop moves toward the active site, where it forms a closed state that orients the C-As bond for dioxygen addition and cleavage. Elucidation of the enzymatic mechanism of this unprecedented C-As lyase reaction will enhance our understanding of recycling of environmental organoarsenicals.


Subject(s)
Arsenicals/metabolism , Dioxygenases/chemistry , Dioxygenases/metabolism , Herbicides/chemistry , Herbicides/metabolism , Lyases/chemistry , Lyases/metabolism , Arsenic/metabolism , Arsenites/chemistry , Arsenites/metabolism , Bacteria/metabolism , Binding Sites , Biotransformation/physiology , Ferric Compounds/chemistry , Ferric Compounds/metabolism
5.
Genome Announc ; 3(3)2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26044439

ABSTRACT

To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1.

SELECTION OF CITATIONS
SEARCH DETAIL
...