Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 14(10): 2367-74, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25179027

ABSTRACT

Islet transplantation is an effective means of treating severe type 1 diabetes in patients with life-threatening hypoglycemia. Improvements in glycemic control with correction of HbA1C enhance quality of life irrespective of insulin independence. By antagonizing the Natural Killer Group 2, member D (NKG2D) receptor expression on NK and CD8+ T cells, in combination with blocking CTLA-4 binding sites, we demonstrate a significant delay of graft rejection in islet allotransplant. Anti-NKG2D combined with CTLA-4 Ig (n = 15) results in prolonged allograft survival, with 84.6 ± 10% of the recipients displaying insulin independence compared to controls (n = 10, p < 0.001). The effect of combination therapy on graft survival is superior to treatments alone (CTLA-4 Ig vs. combination p = 0.024, anti-NKG2D vs. combination p < 0.001) indicating an interaction between these pathways. In addition, combination treatment also improves glucose tolerance when compared to controls (n = 10, p = 0.018). Histologically, NKG2D+ cells were significantly decreased within the allograft after 7 days of combination treatment (n = 6, p = 0.029). T cell proliferation was significantly reduced with anti-NKG2D therapy and CD8+ T cell daughter fractions were also significantly decreased with mAb and combination treatment when measured by in vitro mixed lymphocyte reaction (n = 5, p = 0.015, p = 0.005 and p = 0.048). These results demonstrate that inhibition of NKG2D receptors and costimulatory pathways enhance islet allograft survival.


Subject(s)
CTLA-4 Antigen/immunology , Graft Survival/immunology , Immunoglobulins/administration & dosage , Islets of Langerhans Transplantation , Models, Animal , NK Cell Lectin-Like Receptor Subfamily K/immunology , Animals , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred C57BL
2.
Transplant Proc ; 46(6): 1989-91, 2014.
Article in English | MEDLINE | ID: mdl-25131090

ABSTRACT

BACKGROUND: The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). METHOD: IE were isolated from two manufacturing centers and shipped in 10-cm(2) surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm(2)), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1-3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag(+/-) mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans/physiology , Product Packaging/instrumentation , Silicone Elastomers , Specimen Handling/instrumentation , Animals , Cell Count , Cell Culture Techniques , Cell Hypoxia/physiology , Cell Survival , Humans , Insulin/metabolism , Insulin Secretion , Mice , Oxygen Consumption/physiology
3.
Am J Transplant ; 12(12): 3235-45, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22974315

ABSTRACT

Donor-specific tolerance induced by mixed chimerism is one approach that may eliminate the need for long-term immunosuppressive therapy, while preventing chronic rejection of an islet transplant. However, even in the presence of chimerism it is possible for certain donor tissues or cells to be rejected whereas others from the same donor are accepted (split tolerance). We previously developed a nonmyeloablative protocol that generated mixed chimerism across full major histocompatability complex plus minor mismatches in NOD (nonobese diabetic) mice, however, these chimeras demonstrated split tolerance. In this study, we used radiation chimeras and found that the radiosensitive component of NOD has a greater role in the split tolerance NOD mice develop. We then show that split tolerance is mediated primarily by preexisting NOD lymphocytes and have identified T cells, but not NK cells or B cells, as cells that both resist chimerism induction and mediate split tolerance. Finally, after recognizing the barrier that preexisting T cells impose on the generation of fully tolerant chimeras, the chimerism induction protocol was refined to include nonmyeloablative recipient NOD T cell depletion which generated long-term mixed chimerism across fully allogeneic barriers. Furthermore, these chimeric NOD mice are immunocompetent, diabetes free and accept donor islet allografts.


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Islets of Langerhans Transplantation/immunology , Radiation Chimera/immunology , T-Lymphocytes/immunology , Transplantation Chimera/immunology , Transplantation Tolerance/immunology , Animals , Bone Marrow/immunology , Diabetes Mellitus, Type 1/immunology , Female , Flow Cytometry , Hematopoietic Stem Cells/immunology , Lymphocyte Depletion , Mice , Mice, Inbred C3H , Mice, Inbred NOD , Skin Transplantation/immunology , Transplantation Conditioning , Transplantation, Homologous
4.
Am J Transplant ; 12(2): 322-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22053751

ABSTRACT

Anti-inflammatory agents are used routinely in clinical islet transplantation in an attempt to promote islet engraftment. Infliximab, and more recently etanercept, is being used to neutralize tumor necrosis factor alpha, but this tenet is based on limited preclinical data. One group has promoted the potential of combined etanercept with an IL-1 receptor antagonist, anakinra in a small clinical study, but without strong preclinical data to justify this approach. We therefore sought to evaluate the impact of combined anakinra and etanercept in a marginal islet mass transplant model using human islets in immunodeficient mice. The combination of anakinra and etanercept led to remarkable improvement in islet engraftment (control 36.4%; anakinra 53.9%; etanercept 45.45%; anakinra and etanercept 87.5% euglycemia, p < 0.05 by log-rank) compared to single-drug treated mice or controls. This translated into enhanced metabolic function (area under curve glucose tolerance), improved graft insulin content and marked reduction in beta-cell specific apoptotis (0.67% anakinra + etanercept vs. 23.5% control, p < 0.001). These results therefore strongly justify the combined short-term use of anakinra and etanercept in human islet transplantation.


Subject(s)
Graft Rejection/prevention & control , Graft Survival/drug effects , Immunoglobulin G/pharmacology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Islets of Langerhans Transplantation , Animals , Antirheumatic Agents/pharmacology , Disease Models, Animal , Drug Synergism , Etanercept , Graft Survival/immunology , Humans , Immunosuppressive Agents/pharmacology , Mice , Mice, Inbred BALB C , Receptors, Tumor Necrosis Factor , Recombinant Fusion Proteins , Treatment Outcome
5.
HPB Surg ; 2011: 624060, 2011.
Article in English | MEDLINE | ID: mdl-22114365

ABSTRACT

We investigate the effectiveness of buttressing the surgical stapler to reduce postoperative pancreatic fistulae in a porcine model. As a pilot study, pigs (n = 6) underwent laparoscopic distal pancreatectomy using a standard stapler. Daily drain output and lipase were measured postoperative day 5 and 14. In a second study, pancreatic transection was performed to occlude the proximal and distal duct at the pancreatic neck using a standard stapler (n = 6), or stapler with bovine pericardial strip buttress (n = 6). Results. In pilot study, 3/6 animals had drain lipase greater than 3x serum on day 14. In the second series, drain volumes were not significantly different between buttressed and control groups on day 5 (55.3 ± 31.6 and 29.3 ± 14.2 cc, resp.), nor on day 14 (9.5 ± 4.2 cc and 2.5 ± 0.8 cc, resp., P = 0.13). Drain lipase was not statistically significant on day 5 (3,166 ± 1,433 and 6,063 ± 1,872 U/L, resp., P = 0.25) or day 14 (924 ± 541 and 360 ± 250 U/L). By definition, 3/6 developed pancreatic fistula; only one (control) demonstrating a contained collection arising from the staple line. Conclusion. Buttressed stapler failed to protect against pancreatic fistula in this rigorous surgical model.

SELECTION OF CITATIONS
SEARCH DETAIL
...