Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem ; 20(1): 368-76, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22154558

ABSTRACT

Edema factor (EF) toxin of Bacillus anthracis (NIAID category A), and several other toxins from NIAID category B Biodefense target bacteria are adenylyl cyclases or adenylyl cyclase agonists that catalyze the conversion of ATP to 3',5'-cyclic adenosine monophosphate (cAMP). We previously identified compound 1 (3-[(9-oxo-9H-fluorene-1-carbonyl)-amino]-benzoic acid), that inhibits EF activity in cultured mammalian cells, and reduces diarrhea caused by enterotoxigenic Escherichia coli (ETEC) at an oral dosage of 15µg/mouse. Here, molecular docking was used to predict improvements in potency and solubility of new derivatives of compound 1 in inhibiting edema toxin (ET)-catalyzed stimulation of cyclic AMP production in murine monocyte-macrophage cells (RAW 264.7). Structure-activity relationship (SAR) analysis of the bioassay results for 22 compounds indicated positions important for activity. Several derivatives demonstrated superior pharmacological properties compared to our initial lead compound, and are promising candidates to treat anthrax infections and diarrheal diseases induced by toxin-producing bacteria.


Subject(s)
Bacillus anthracis/metabolism , Bacterial Toxins/antagonists & inhibitors , Drug Design , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/metabolism , Administration, Oral , Animals , Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Benzoates/chemical synthesis , Benzoates/chemistry , Binding Sites , Cell Line , Computer Simulation , Cyclic AMP/metabolism , Fluorenes/chemistry , Mice , Protein Structure, Tertiary , Structure-Activity Relationship
2.
Antimicrob Agents Chemother ; 55(1): 132-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20956592

ABSTRACT

Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.


Subject(s)
Anthrax/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Nicotiana/metabolism , Receptors, Peptide/immunology , Receptors, Peptide/metabolism , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Animals , Humans , Immunoglobulin Fc Fragments/genetics , Rabbits , Receptors, Peptide/genetics , Recombinant Fusion Proteins/genetics , Nicotiana/genetics
3.
Open Microbiol J ; 4: 34-46, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-21127743

ABSTRACT

Successful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 µg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models. Mice, guinea pig, and rabbit models have been developed to evaluate the protective efficacy of antibiotic therapy against these life-threatening infections. Our results indicated that doses of ciprofloxacin and levofloxacin required to protect mice against inhalation anthrax were approximately 18-fold higher than the doses of levofloxacin required to protect against pneumonic plague and tularemia. Further, the critical period following aerosol exposure of mice to either B. anthracis spores or Y. pestis was 24 h, while mice challenged with F. tularensis could be effectively protected when treatment was delayed for as long as 72 h postchallenge. In addition, it was apparent that prolonged antibiotic treatment was important in the effective treatment of inhalation anthrax in mice, but short-term treatment of mice with pneumonic plague or tularemia infections were usually successful. These results provide effective antibiotic dosages in mice, guinea pigs, and rabbits and lay the foundation for the development and evaluation of combinational treatment modalities.

4.
Infect Immun ; 78(4): 1740-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20123712

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) produces the ADP-ribosyltransferase toxin known as heat-labile enterotoxin (LT). In addition to the toxic effect of LT resulting in increases of cyclic AMP (cAMP) and disturbance of cellular metabolic processes, this toxin promotes bacterial adherence to intestinal epithelial cells (A. M. Johnson, R. S. Kaushik, D. H. Francis, J. M. Fleckenstein, and P. R. Hardwidge, J. Bacteriol. 191:178-186, 2009). Therefore, we hypothesized that the identification of a compound that inhibits the activity of the toxin would have a suppressive effect on the ETEC colonization capabilities. Using in vivo and in vitro approaches, we present evidence demonstrating that a fluorenone-based compound, DC5, which inhibits the accumulation of cAMP in intoxicated cultured cells, significantly decreases the colonization abilities of adenylyl cyclase toxin-producing bacteria, such as ETEC. These findings established that DC5 is a potent inhibitor both of toxin-induced cAMP accumulation and of ETEC adherence to epithelial cells. Thus, DC5 may be a promising compound for treatment of diarrhea caused by ETEC and other adenylyl cyclase toxin-producing bacteria.


Subject(s)
Adenylyl Cyclase Inhibitors , Adhesins, Bacterial/metabolism , Bacterial Toxins/antagonists & inhibitors , Enterotoxigenic Escherichia coli/pathogenicity , Enterotoxins/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/antagonists & inhibitors , Animals , Bacterial Adhesion/drug effects , Cell Line , Colony Count, Microbial , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/toxicity , Epithelial Cells/microbiology , Female , Fluorenes/administration & dosage , Fluorenes/pharmacology , Fluorenes/toxicity , Humans , Inhibitory Concentration 50 , Intestine, Small/microbiology , Intestine, Small/pathology , Macrophages/microbiology , Mice
5.
Am J Respir Cell Mol Biol ; 42(1): 40-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19329554

ABSTRACT

Pneumonia is a serious problem worldwide. We recently demonstrated that innate defense mechanisms of the lung are highly inducible against pneumococcal pneumonia. To determine the breadth of protection conferred by stimulation of lung mucosal innate immunity, and to identify cells and signaling pathways activated by this treatment, mice were treated with an aerosolized bacterial lysate, then challenged with lethal doses of bacterial and fungal pathogens. Mice were highly protected against a broad array of Gram-positive, Gram-negative, and class A bioterror bacterial pathogens, and the fungal pathogen, Aspergillus fumigatus. Protection was associated with rapid pathogen killing within the lungs, and this effect was recapitulated in vitro using a respiratory epithelial cell line. Gene expression analysis of lung tissue showed marked activation of NF-kappaB, type I and II IFN, and antifungal Card9-Bcl10-Malt1 pathways. Cytokines were the most strongly induced genes, but the inflammatory cytokines TNF and IL-6 were not required for protection. Lung-expressed antimicrobial peptides were also highly up-regulated. Taken together, stimulated innate resistance appears to occur through the activation of multiple host defense signaling pathways in lung epithelial cells, inducing rapid pathogen killing, and conferring broad protection against virulent bacterial and fungal pathogens. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value for protection of patients with neutropenia or impaired adaptive immunity against opportunistic pneumonia, and for defense of immunocompetent subjects against a bioterror threat or epidemic respiratory infection.


Subject(s)
Bacterial Infections/immunology , Epithelial Cells/cytology , Immunity, Innate , Lung/pathology , Mycoses/immunology , Pneumonia/immunology , Aerosols , Animals , Bacterial Infections/microbiology , Epithelial Cells/microbiology , Female , Gene Expression Regulation , Inflammation , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mycoses/microbiology , Pneumonia/microbiology , Time Factors
6.
Bioorg Med Chem Lett ; 18(14): 4215-8, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18539457

ABSTRACT

The synthesis and development of a novel class of molecules that inhibit anthrax edema factor, an adenylyl cyclase, is reported. These molecules are derived from the initial discovery that histidine and imidazole adducts of the prostaglandin PGE(2) reduce the net secretory response of cholera toxin-challenged mice and act directly on the action of anthrax edema factor, a calmodulin-dependent adenylyl cyclase. The simple enones examined in this letter were prepared by palladium-catalyzed Suzuki reaction.


Subject(s)
Adenylyl Cyclases/chemistry , Anthrax/metabolism , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Adenylyl Cyclases/metabolism , Animals , Antigens, Bacterial , Bacillus anthracis/enzymology , Bacterial Toxins , Binding Sites , Calmodulin/metabolism , Catalysis , Dinoprostone/metabolism , Drug Design , Ketones , Mice , Models, Chemical , Palladium/chemistry
7.
Infect Immun ; 75(7): 3414-24, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17452469

ABSTRACT

Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax.


Subject(s)
Anthrax/prevention & control , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Disease Models, Animal , Lung/microbiology , Administration, Inhalation , Animals , Anthrax/microbiology , Anthrax/pathology , Anthrax/transmission , Bacillus anthracis/pathogenicity , Bacillus anthracis/physiology , Humans , Lung/pathology , Rabbits , Spores, Bacterial/immunology
SELECTION OF CITATIONS
SEARCH DETAIL