Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 74(9): 2799-2810, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36124695

ABSTRACT

Sweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas. We provide a comprehensive overview of current knowledge on sweet briar traits associated with drought tolerance and particularly water use efficiency, sugar accumulation, accumulation of CO2 in intercellular spaces, stomatal conductance, gibberellin level, effective electron transport between photosystem II and photosystem I, and protein content. We discuss the genetics and potential applications in plant breeding and suggest future directions of study concerning invasive populations of R. rubiginosa. Finally, we point out that sweet briar can provide new genes for breeding in the context of depleting gene pools of the crop plants.


Subject(s)
Rosa , Droughts , Plant Breeding , Plants , Agriculture
2.
Molecules ; 27(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335168

ABSTRACT

Light quality is essential in in vitro cultures for morphogenesis process. Light emitting diodes system (LED) allows adjustment as desired and the most appropriate light spectrum. The study analyzed the influence of different LED light quality on the balance of endogenous phytohormones and related compounds (PhRC) in in vitro multiplied axillary shoots of Gerbera jamesonii. Over a duration of 40 days, the shoots were exposed to 100% red light, 100% blue light, red and blue light at a 7:3 ratio with control fluorescent lamps. Every 10 days plant tissues were tested for their PhRC content with the use of an ultra-high performance liquid chromatography (UHPLC). Shoots' morphometric features were analyzed after a multiplication cycle. We identified 35 PhRC including twelve cytokinins, seven auxins, nine gibberellins, and seven stress-related phytohormones. Compounds content varied from 0.00052 nmol/g to 168.15 nmol/g of dry weight (DW). The most abundant group were stress-related phytohormones (particularly benzoic and salicylic acids), and the least abundant were cytokinins (about 370 times smaller content). LED light did not disturb the endogenous phytohormone balance, and more effectively mitigated the stress experienced by in vitro grown plants than the fluorescent lamps. The stress was most effectively reduced under the red LED. Red and red:blue light lowered tissue auxin levels. Blue LED light lowered the shoot multiplication rate and their height, and induced the highest content of gibberellins at the last stage of the culture.


Subject(s)
Plant Growth Regulators , Plant Leaves , Biomass , Gibberellins , Light , Plant Growth Regulators/pharmacology
3.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: mdl-35159295

ABSTRACT

The tree ferns are an important component of tropical forests. In view of this, the enhancement of in vitro production of these plants is needed. Thus, the effect of different light-emitting diodes (LEDs) as well as control fluorescent lamps (Fl) and a 3-week-long period of darkness at the beginning of in vitro culture on micropropagation of the tree fern Cyathea delgadii Sternb. was analysed. Moreover, the photosynthetic pigment content and secondary metabolite profiles were estimated. The period of darkness contributed to a high production of somatic embryo-derived sporophytes and a low production of gametophytes. The formation of new sporophytes was stimulated by RBY (35% red, 15% blue, and 50% yellow) and B (100% blue) lights when the stipe explants or whole young sporophytes were used in the culture, respectively. The elongation of the roots and leaves was stimulated by RBfR light (35% red, 15% blue, and 50% far red), while root production increased under RBY light. The RB (70% red and 30% blue) and B lights stimulated the accumulation of chlorophyll better than Fl light. The most abundant metabolite found in the plant extracts was trans-5-O-caffeoylquinic acid (1.013 µg/mg of dry weight). The extract obtained from plants growing in a greenhouse had the best antioxidant activity.


Subject(s)
Ferns , Chlorophyll/metabolism , Ferns/metabolism , Lighting , Photosynthesis , Plant Leaves/metabolism
4.
Biology (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681135

ABSTRACT

An energy-saving light emitting diode (LED) system allows for adjustment of light quality, which affects plant development and metabolic processes in in vitro cultures. The study investigated the content of endogenous carbohydrates and the condition of the photosynthetic apparatus of Gerbera jamesonii Bolus ex Hook. f. Our aim was to analyze the effects of different LED light qualities-100% red light (R LED), 100% blue (B LED), a mixture of red and blue (7:3) (RB LED), and a fluorescent lamp as a control (Fl)-during the multiplication of axillary shoots. After 40 days, the culture measurements were performed using a non-invasive pulse amplitude modulation (PAM) fluorimeter. Sugar content was assessed with high performance liquid chromatography (HPLC). Two forms of free monosaccharides (glucose and fructose), two sugar alcohol derivatives (inositol and glycerol), and seven forms of free oligosaccharides were identified. Of those, glucose content was the highest. LEDs did not disturb the sugar metabolism in multiplied shoots. Their monosaccharides were three times more abundant than oligosaccharides; the same results were found in plants grown under control light. R light depleted the performance of the photosynthetic apparatus and caused its permanent damage. The RB LED spectrum ensured the most efficient non-photochemical quenching of the photosystem II (PS II) excitation state and high shoot quality.

5.
J Photochem Photobiol B ; 203: 111768, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31931383

ABSTRACT

In vitro callus cultures of Verbena officinalis L. were maintained on solid Murashige and Skoog medium, enriched with 1 mg dm-3 BA and 1 mg dm-3 IBA under LED lights (red, blue, red/blue 70%/30%), in darkness and under control fluorescent lamps. The measurements of 2 phenylpropanoid glycosides (verbascoside and isoverbascoside) and 23 phenolic acids were performed in methanolic extracts from the biomass collected after 2-, 3- and 4-week growth cycles using the HPLC-DAD method. The presence of verbascoside, isoverbascoside and additionaly 7 phenolic acids (protocatechuic, chlorogenic, vanillic, caffeic, ferulic, o-coumaric and m-coumaric acids) was confirmed in all extracts. Blue and red/blue lights stimulated the accumulation of verbascoside (max. of 6716 and 6023 mg 100 g-1 DW after a 4-week growth cycle) and isoverbascoside (max. 333 and 379 mg 100 g-1 DW also after 4 weeks). The maximum amounts of verbascoside and isoverbascoside were respectively 1.8- and 7.0-fold higher than under the control conditions. Phenolic acids were accumulated in different amounts, and the maximum total amounts ranged from 36 to 65 mg 100 g-1 DW. LED lights also stimulated their accumulation in comparison with darkness and control. The main phenolic acids included: m-coumaric acid (max. 39 mg 100 g-1 DW), ferulic acid (max. 12 mg 100 g-1 DW), and protocatechuic acid (max. 13 mg 100 g-1 DW). Additionally, the quantities of photosynthetic pigments (chlorophyll a, b and carotenoids) were estimated in acetonic extracts using spectrophotometry. Red/blue light stimulated the biosynthesis of pigments (max. total content 287 µg g-1 FW after 4-week growth cycles). This is the first study describing the effect of LED lights on the production of phenylpropanoid glycosides and phenolic acids in V. officinalis callus cultures. Very high amounts of verbascoside and isoverbascoside are interesting from a practical point of view.


Subject(s)
Glucosides/metabolism , Hydroxybenzoates/metabolism , Light , Phenols/metabolism , Verbena/metabolism , Biomass , Carotenoids/analysis , Chlorophyll/analysis , Chlorophyll A/analysis , Chromatography, High Pressure Liquid , Glucosides/analysis , Hydroxybenzoates/analysis , Phenols/analysis , Photosynthesis/radiation effects , Principal Component Analysis , Regression Analysis , Spectrophotometry
6.
Sci Rep ; 9(1): 19390, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852989

ABSTRACT

Little is known about mechanisms of sweet briar adaptation to dry habitats. The species is highly invasive and displaces native plants from dry lands of the southern hemisphere. This study evaluates physiological basis of Rosa rubiginosa L. adaptation to soil drought. We performed a pot soil drought experiment and assessed water relations, water use efficiency, gas exchange and photosynthetic apparatus activity. The study also measured the content of chlorophyll, soluble carbohydrates and proline and analyzed plant biomass growth. We hypothesized that the drought stress induced an effective mechanism enabling adaptation of young sweet briar roses to soil water deficit. The study identified several adaptation mechanisms of R. rubiginosa allowing the plant to survive soil drought. These included limiting transpiration and stomatal conductance, increasing the level of soluble sugars, reducing chlorophyll content, accumulating CO2 in intercellular spaces, and increasing the quantum yield of electron transport from QA- to the PSI end electron acceptors. As a result, young sweet briar roses limited water loss and photoinhibition damage to the photosynthetic apparatus, which translated into consumption of soluble sugars for growth purposes. This study showed that photosynthesis optimization and increased activity of the photosynthetic apparatus made it possible to avoid photoinhibition and to effectively use water and sugars to maintain growth during water stress. This mechanism is probably responsible for the invasive nature of R. rubiginosa and its huge potential to displace native plant species from dry habitats of the southern hemisphere.


Subject(s)
Adaptation, Physiological/genetics , Droughts , Plant Leaves/metabolism , Rosa/physiology , Chlorophyll/metabolism , Dehydration/genetics , Ecosystem , Photosynthesis/genetics , Plant Leaves/growth & development , Rosa/metabolism , Water/metabolism
7.
Water Air Soil Pollut ; 228(2): 81, 2017.
Article in English | MEDLINE | ID: mdl-28190899

ABSTRACT

The aim of this work was to analyse the response of Rosa rubiginosa to salinity induced by different concentrations of sodium chloride and calcium chloride (0, 25, 50, 100, 150 and 200 mM). Besides salt accumulation and pH changes, other parameters were investigated including photosynthetic activity, leaf water content, the dynamics of necrosis and chlorosis appearance and leaf drying. The study was complemented with microscopic analysis of changes in leaf anatomy. R. rubiginosa was more sensitive to the salinity induced by calcium chloride than by sodium chloride. Plant response to salinity differed depending of the salt concentration. These differences were manifested by higher dynamics of necrosis and chlorosis appearance and leaf drying. CaCl2 showed greater inhibition of the photosynthetic apparatus and photosynthetic activity. Treatment with CaCl2 caused more visible deformation of palisade cells, reduction in their density and overall reduction in leaf thickness. The study demonstrated higher accumulation of CaCl2 in the soil, and thus greater limitations in water availability resulting in reduced leaf water content and quicker drying of leaves as compared with NaCl-treated plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...