Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673097

ABSTRACT

This research aimed to optimize the production conditions for geopolymer matrices by investigating the combination of heat curing conditions and the incorporation of recycled ceramic fines (CFs) as a partial replacement material for fly ash (FA). The obtained physical and mechanical properties of the composites confirmed the positive impact resulting from increasing the curing temperature from 65 °C to 85 °C and using CFs in the amount of 37.5% as a replacement for FA. The results were from laboratory tests performed to evaluate compressive strength, bending strength, bulk density, and water absorption of the geopolymer mixes. In addition, microscopic observations and porosity assessment were also performed, which confirmed that a further increase in the replacement of FA by CFs causes an increase in the porosity of the mixes and, thus, a decrease in all the assessed properties that are relevant to their practical use.

2.
Materials (Basel) ; 15(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35591347

ABSTRACT

This article presents the physical and mechanical properties of geopolymer concrete with lightweight artificial aggregate. A research experiment where the influence of fly ash-slag mix (FA-S), as part of a pozzolanic additive, on the properties of geopolymers was carried out and the most favorable molar concentration of sodium hydroxide solution was determined. The values of three variables of the examined properties of the geopolymer lightweight concrete (GLC) were adopted: X1-the content of the pozzolanic additives with fly ash + flay ash-slag (FA + FA-S) mix: 200, 400 and 600 kg/m3; X2-the total amount of FA-S in the pozzolanic additives: 0, 50 and 100%; X3-the molarity of the activator NaOH: (8, 10 and 12 M). In order to increase the adhesion of the lightweight artificial aggregate to the geopolymer matrix, the impregnation of the NaOH solution was used. Based on the obtained results for the GLC's compressive strength after 28 days, water absorption, dry and saturated density and thermal conductivity index, it was found that the most favorable parameters were obtained with 400 kg/m3 of pozzolanic additives (with 50% FA-S and 50% FA) and 10 NaOH molarity. Changes in the activator's concentration from 8 to 10 M improved the compressive strength by 54% (for a pozzolana content of 200 kg/m3) and by 26% (for a pozzolana content of 600 kg/m3). The increase in the content of pozzolanic additives from 200 to 400 kg/m3 resulted in a decrease in water absorption from 23% to 18%. The highest conductivity coefficient, equal to 0.463 W/m·K, was determined, where the largest amount of pozzolanic additives and the least lightweight aggregate were added. The structural tests used scanning electron microscopy analysis, and the beneficial effect of impregnating the artificial aggregate with NaOH solution was proved. It resulted in a compact interfacial transition zone (ITZ) between the lightweight aggregate and the geopolymer matrix because of the chemical composition (e.g., silica amount), the silica content and the alkali presoaking process.

3.
Materials (Basel) ; 15(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35207975

ABSTRACT

The properties of cement concrete using waste materials-namely, recycled cement mortar, fly ash-slag, and recycled concrete aggregate-are presented. A treatment process for waste materials is proposed. Two research experiments were conducted. In the first, concretes were made with fly ash-slag mix (FAS) and recycled cement mortar (RCM) as additions. The most favorable content of the concrete additive in the form of RCM and FAS was determined experimentally, and their influence on the physical and mechanical properties of concrete was established. For this purpose, 10 test series were carried out according to the experimental plan. In the second study, concretes containing FAS-RCM and recycled concrete aggregate (RCA) as a 30% replacement of natural aggregate (NA) were prepared. The compressive strength, frost resistance, water absorption, volume density, thermal conductivity, and microstructure were researched. The test results show that the addition of FAS-RCM and RCA can produce composites with better physical and mechanical properties compared with concrete made only of natural raw materials and cement. The detailed results show that FAS-RCM can be a valuable substitute for cement and RCA as a replacement for natural aggregates. Compared with traditional cement concretes, concretes made of FAS, RCM, and RCA are characterized by a higher compressive strength: 7% higher in the case of 30% replacement of NA by RCA with the additional use of the innovative FAS-RCM additive as 30% of the cement mass.

4.
Materials (Basel) ; 14(16)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34443103

ABSTRACT

Nowadays, effective and eco-friendly ways of using waste materials that could replace natural resources (for example, sand) in the production of concrete composites are highly sought. The article presents the results of research on geopolymer composites produced from two types of waste materials-hemp and fine fractions recovered from recycled cement concrete, which were both used as a replacement for standard sand. A total of two research experiments were conducted. In the first experiment, geopolymer mortars were made using the standard sand, which was substituted with recycled fines, from 0% to 30% by weight. In the second study, geopolymers containing organic filler were designed, where the variables were (i) the amount of hemp and the percent of sand by volume (0%, 2.5%, and 5%) and(ii) the amount of hydrated lime and the percent of fly ash (by weight) (0%, 2%, and 4%) that were prepared. In both cases, the basic properties of the prepared composites were determined, including their flexural strength, compressive strength, volume density in a dry and saturated state, and water absorption by weight. Observations of the microstructure of the geopolymers using an electron and optical microscope were also conducted. The test results show that both materials (hemp and recycled fines) and the appropriate selection of the proportions of mortar components and can produce composites with better physical and mechanical properties compared to mortars made of only natural sand. The detailed results show that recycled fines (RF) can be a valuable substitute for natural sand. The presence of 30% recycled fines (by weight) as a replacement for natural sand in the alkali-activated mortar increased its compressive strength by 26% and its flexural strength by 9% compared to control composites (compared to composites made entirely of sand without its alternatives). The good dispersion of both materials in the geopolymer matrix probably contributed to filling of the pores and reducing the water absorption of the composites. The use of hemp as a sand substitute generally caused a decrease in the strength properties of geopolymer mortar, but satisfactory results were achieved with the substitution of 2.5% hemp (by volume) as a replacement for standard sand (40 MPa for compressive strength, and 6.3MPa for flexural strength). Both of these waste materials could be used as a substitute for natural sand and are examples of an eco-friendly and sustainable substitution to save natural, non-renewable resources.

5.
Materials (Basel) ; 13(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877716

ABSTRACT

The process of recycling concrete rubble is accompanied by the formation of a large amount of fine fraction, which cannot be reused as aggregate. The results of research on the possibility of using recycled cement mortar (RCM), obtained during concrete recycling, as a cementitious supplementary material, are presented. The experimental research was carried out on the basis of two variables determining the recycling process: X1-temperature (range of variation 288-712 °C) and X2-time (range of variation 30-90 min) of thermal treatment of concrete rubble. The experiment included 10 series of new composites made with RCMs subjected to different variants of thermal treatment, and two additional control series. The best treatment parameters were determined based on the assessment of selected physical and mechanical properties of the new cement composites, as well as the analysis of characteristics and microstructure of RCM. The test results showed that proper thermal treatment of concrete rubble makes it possible to obtain a high-quality fine fraction, which has the properties of an active addition and can be used as a partial replacement for cement in mortars and concretes.

6.
Materials (Basel) ; 12(3)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30682832

ABSTRACT

Concrete is a building material commonly used for ages. Therefore, in the result of repairs or demolition of building structures, large amounts of concrete rubble are created, which requires appropriate management. The aim of the realized research was to determine the influence of heat and mechanical treatment of concrete rubble on the properties of recycled aggregate concrete. The research experiment included 12 series, with three variables: X1-roasting temperature (300, 600, 900 °C), X2-time of mechanical treatment (5, 10, 15 min), X3-content of coarse recycled aggregates (20, 40, 60% by volume). Two additional series containing recycled aggregate without treatment and natural aggregate were also prepared. Established properties of individual aggregates have confirmed a positive effect of thermo-mechanical treatment. Then, based on the results of compressive strength, flexural strength, Young's modulus, volumetric density, water absorption, water permeability and capillarity, the most favourable parameters of heat and mechanical treatment of concrete were determined. The test results showed that appropriate treatment of concrete rubble allows to obtain high-quality coarse aggregate and valuable fine fraction. This was also confirmed by the macro- and microscopic observations of the aggregate and separated cement paste. Works realized on the concrete recycling method resulted in obtaining a patent PAT.229887.

SELECTION OF CITATIONS
SEARCH DETAIL
...