Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
2.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Article in English | MEDLINE | ID: mdl-32203420

ABSTRACT

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Subject(s)
Cytoskeleton/genetics , GTPase-Activating Proteins/genetics , Integrins/genetics , Mechanotransduction, Cellular/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , rac1 GTP-Binding Protein/genetics , Animals , COS Cells , Cell Adhesion , Cell Line , Cell Movement , Chlorocebus aethiops , Computational Biology , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Dogs , Fibroblasts/metabolism , Fibroblasts/ultrastructure , GTPase-Activating Proteins/classification , GTPase-Activating Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Integrins/metabolism , Madin Darby Canine Kidney Cells , Mice , Pan troglodytes , Protein Domains , Rats , Rho Guanine Nucleotide Exchange Factors/classification , Rho Guanine Nucleotide Exchange Factors/metabolism , rac1 GTP-Binding Protein/metabolism
3.
J Cell Sci ; 133(4)2020 02 24.
Article in English | MEDLINE | ID: mdl-31974115

ABSTRACT

Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an in vivo correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.


Subject(s)
Podocytes , Tyrosine , Cluster Analysis , Endocytosis , Membrane Proteins , Oncogene Proteins/metabolism , Phosphorylation , Podocytes/metabolism , Tyrosine/metabolism
4.
Nature ; 569(7754): 131-135, 2019 05.
Article in English | MEDLINE | ID: mdl-30996350

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Leukemia Inhibitory Factor/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Paracrine Communication , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/blood , Male , Mass Spectrometry , Mice , Pancreatic Neoplasms/diagnosis , Paracrine Communication/drug effects , Receptors, OSM-LIF/deficiency , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Tumor Microenvironment
5.
Cancer Res ; 78(17): 4826-4838, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29930100

ABSTRACT

The ShcA adaptor protein transduces oncogenic signals downstream of receptor tyrosine kinases. We show here that breast tumors engage the ShcA pathway to increase their metabolism. ShcA signaling enhanced glucose catabolism through glycolysis and oxidative phosphorylation, rendering breast cancer cells critically dependent on glucose. ShcA signaling simultaneously increased the metabolic rate and flexibility of breast cancer cells by inducing the PGC-1α transcriptional coactivator, a central regulator of mitochondrial metabolism. Breast tumors that engaged ShcA signaling were critically dependent on PGC-1α to support their increased metabolic rate. PGC-1α deletion drastically delayed breast tumor onset in an orthotopic mouse model, highlighting a key role for PGC-1α in tumor initiation. Conversely, reduced ShcA signaling impaired both the metabolic rate and flexibility of breast cancer cells, rendering them reliant on mitochondrial oxidative phosphorylation. This metabolic reprogramming exposed a targetable metabolic vulnerability, leading to a sensitization of breast tumors to inhibitors of mitochondrial complex I (biguanides). Genetic inhibition of ShcA signaling in the Polyoma virus middle T (MT) breast cancer mouse model sensitized mammary tumors to biguanides during the earliest stages of breast cancer progression. Tumor initiation and growth were selectively and severely impaired in MT/ShcA-deficient animals. These data demonstrate that metabolic reprogramming is a key component of ShcA signaling and serves an unappreciated yet vital role during breast cancer initiation and progression. These data further unravel a novel interplay between ShcA and PGC-1α in the coordination of metabolic reprogramming and demonstrate the sensitivity of breast tumors to drugs targeting oxidative phosphorylation.Significance: This study uncovers a previously unrecognized mechanism that links aberrant RTK signaling with metabolic perturbations in breast cancer and exposes metabolic vulnerabilities that can be targeted by inhibitors of oxidative phosphorylation. Cancer Res; 78(17); 4826-38. ©2018 AACR.


Subject(s)
Breast Neoplasms/genetics , Mammary Neoplasms, Animal/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Animals , Biguanides/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Models, Animal , Female , Humans , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/virology , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Polyomavirus/pathogenicity , Signal Transduction/drug effects , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
6.
Sci Signal ; 11(517)2018 02 13.
Article in English | MEDLINE | ID: mdl-29440511

ABSTRACT

Polarity is a fundamental property of most cell types. The Par protein complex is a major driving force in generating asymmetrically localized protein networks and consists of atypical protein kinase C (aPKC), Par3, and Par6. Dysfunction of this complex causes developmental abnormalities and diseases such as cancer. We identified a PDZ domain-binding motif in Par6 that was essential for its interaction with Par3 in vitro and for Par3-mediated membrane localization of Par6 in cultured cells. In fly embryos, we observed that the PDZ domain-binding motif was functionally redundant with the PDZ domain in targeting Par6 to the cortex of epithelial cells. Our structural analyses by x-ray crystallography and NMR spectroscopy showed that both the PDZ1 and PDZ3 domains but not the PDZ2 domain in Par3 engaged in a canonical interaction with the PDZ domain-binding motif in Par6. Par3 thus has the potential to recruit two Par6 proteins simultaneously, which may facilitate the assembly of polarity protein networks through multivalent PDZ domain interactions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Polarity , Drosophila Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , PDZ Domains , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Cell Line , Crystallography, X-Ray , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Models, Molecular , Protein Binding
7.
Elife ; 62017 10 13.
Article in English | MEDLINE | ID: mdl-29028184

ABSTRACT

KCC2 is a neuron-specific K+-Cl- cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.


Subject(s)
Neurons/physiology , Neuropeptides/metabolism , Phosphoproteins/metabolism , Protein Interaction Maps , Symporters/metabolism , Synapses/physiology , Adaptor Proteins, Signal Transducing , Animals , Brain/cytology , Immunoprecipitation , Intracellular Signaling Peptides and Proteins , Mass Spectrometry , Mice, Inbred C57BL , Proteomics , K Cl- Cotransporters
8.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2449-2459, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28964849

ABSTRACT

Although Hematopoietic Stem and Progenitor Cell (HSPC) proliferation, survival and expansion have been shown to be supported by the cooperative action of different cytokines, little is known about the intracellular signaling pathways that are activated by cytokines upon binding to their receptors. Our study showed that Growth factor receptor-bound protein 2 (Grb2) mRNAs are preferentially expressed in HSC compared to progenitors and differentiated cells of the myeloid and erythroid lineages. Conditional deletion of Grb2 induced a rapid decline of erythroid and myeloid progenitors and a progressive decline of HSC numbers in steady state conditions. We showed that when transplanted, Grb2 deleted bone marrow cells could not reconstitute irradiated recipients. Strinkingly, Grb2 deletion did not modify HSPC quiescence, but impaired LT-HSC and progenitors ability to respond a proliferative signal induced by 5FU in vivo and by various cytokines in vitro. We showed finally that Grb2 links IL3 signaling to the ERK/MAPK proliferative pathway and that both SH2 and SH3 domains of Grb2 are crucial for IL3 signaling in progenitor cells. Our findings position Grb2 as a key adaptor that integrates various cytokines response in cycling HSPC.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , GRB2 Adaptor Protein/genetics , Hematopoietic Stem Cells/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell Proliferation/genetics , Erythroid Cells/metabolism , Gene Knockout Techniques , Hematopoietic Stem Cells/cytology , Mice , Myeloid Cells/metabolism , Signal Transduction
9.
Nat Commun ; 8: 14638, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276425

ABSTRACT

Tyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression. Herein we show that the ShcA pathway simultaneously activates STAT3 immunosuppressive signals and impairs STAT1-driven immune surveillance in breast cancer cells. Impaired Y239/Y240-ShcA phosphorylation selectively reduces STAT3 activation in breast tumours, profoundly sensitizing them to immune checkpoint inhibitors and tumour vaccines. Finally, the ability of diminished tyrosine kinase signalling to initiate STAT1-driven immune surveillance can be overcome by compensatory STAT3 hyperactivation in breast tumours. Our data indicate that inhibition of pY239/240-ShcA-dependent STAT3 signalling may represent an attractive therapeutic strategy to sensitize breast tumours to multiple immunotherapies.


Subject(s)
Breast Neoplasms/immunology , Immunologic Surveillance , Mammary Neoplasms, Experimental/immunology , STAT1 Transcription Factor/immunology , STAT3 Transcription Factor/immunology , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Computational Biology , Costimulatory and Inhibitory T-Cell Receptors/antagonists & inhibitors , Costimulatory and Inhibitory T-Cell Receptors/immunology , Datasets as Topic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mammary Neoplasms, Experimental/genetics , Mice, Transgenic , Primary Cell Culture , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Sequence Analysis, RNA , Signal Transduction/genetics , Signal Transduction/immunology , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/immunology , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Mol Cell Biol ; 36(6): 1007-18, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26755559

ABSTRACT

The heat shock protein 90 (HSP90) and cell division cycle 37 (CDC37) chaperones are key regulators of protein kinase folding and maturation. Recent evidence suggests that thermodynamic properties of kinases, rather than primary sequences, are recognized by the chaperones. In concordance, we observed a striking difference in HSP90 binding between wild-type (WT) and kinase-dead (KD) glycogen synthase kinase 3ß (GSK3ß) forms. Using model cell lines stably expressing these two GSK3ß forms, we observed no interaction between WT GSK3ß and HSP90, in stark contrast to KD GSK3ß forming a stable complex with HSP90 at a 1:1 ratio. In a survey of 91 ectopically expressed kinases in DLD-1 cells, we compared two parameters to measure HSP90 dependency: static binding and kinase stability following HSP90 inhibition. We observed no correlation between HSP90 binding and reduced stability of a kinase after pharmacological inhibition of HSP90. We expanded our stability study to >50 endogenous kinases across four cell lines and demonstrated that HSP90 dependency is context dependent. These observations suggest that HSP90 binds to its kinase client in a particular conformation that we hypothesize to be associated with the nucleotide-processing cycle. Lastly, we performed proteomics profiling of kinases and phosphopeptides in DLD-1 cells to globally define the impact of HSP90 inhibition on the kinome.


Subject(s)
Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mutation , Animals , Cell Line , Glycogen Synthase Kinase 3 beta , Humans , Mice , Protein Binding , Protein Kinases/metabolism
11.
Nature ; 529(7584): 48-53, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26700805

ABSTRACT

The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNA-DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.


Subject(s)
Arginine/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Transcription Termination, Genetic , Cell Line , DNA Damage , DNA Helicases , Humans , Methylation , Multifunctional Enzymes , Neurodegenerative Diseases/genetics , Protein Binding , Protein Structure, Tertiary , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Survival of Motor Neuron 1 Protein/genetics , Transcription Elongation, Genetic
12.
Nat Commun ; 6: 8623, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26465210

ABSTRACT

Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large--but not small--phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles.


Subject(s)
Actins/metabolism , Phagocytosis , Phosphatidylinositol 3-Kinases/metabolism , rho GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/metabolism , Healthy Volunteers , Humans , Rho Guanine Nucleotide Exchange Factors/metabolism
13.
Protein Sci ; 24(11): 1890-900, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26332758

ABSTRACT

Antibodies are indispensable tools in biochemical research and play an expanding role as therapeutics. While hybridoma technology is the dominant method for antibody production, phage display is an emerging technology. Here, we developed and employed a high-throughput pipeline that enables selection of antibodies against hundreds of antigens in parallel. Binding selections using a phage-displayed synthetic antigen-binding fragment (Fab) library against 110 human SH3 domains yielded hundreds of Fabs targeting 58 antigens. Affinity assays demonstrated that representative Fabs bind tightly and specifically to their targets. Furthermore, we developed an efficient affinity maturation strategy adaptable to high-throughput, which increased affinity dramatically but did not compromise specificity. Finally, we tested Fabs in common cell biology applications and confirmed recognition of the full-length antigen in immunoprecipitation, immunoblotting and immunofluorescence assays. In summary, we have established a rapid and robust high-throughput methodology that can be applied to generate highly functional and renewable antibodies targeting protein domains on a proteome-wide scale.


Subject(s)
Antibodies/chemistry , Cell Surface Display Techniques/methods , High-Throughput Screening Assays/methods , Recombinant Fusion Proteins/chemistry , src Homology Domains/genetics , Amino Acid Sequence , Antibodies/genetics , Antibodies/metabolism , HEK293 Cells , Humans , Molecular Sequence Data , Protein Engineering , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment
14.
Nat Commun ; 6: 7286, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26129894

ABSTRACT

During angiogenesis, Rho-GTPases influence endothelial cell migration and cell-cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell-cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis.


Subject(s)
GTPase-Activating Proteins/physiology , Neovascularization, Pathologic , Neovascularization, Physiologic , Pseudopodia/physiology , Animals , Cytoskeleton/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Vascular Endothelial Growth Factor A/metabolism , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
15.
Org Biomol Chem ; 13(27): 7384-8, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26077966

ABSTRACT

There is an ever-increasing interest in synthetic methods that not only enable peptide macrocyclization, but also facilitate downstream application of the synthesized molecules. We have found that aziridine amides are stereoelectronically attenuated in a macrocyclic environment such that non-specific interactions with biological nucleophiles are reduced or even shut down. The electrophilic reactivity, revealed at high pH, enables peptide sequencing by mass spectrometry, which will further broaden the utility of aziridine amide-containing libraries of macrocycles.


Subject(s)
Amides/chemistry , Electrons , Peptides, Cyclic/chemistry , Sequence Analysis, Protein , Aziridines/chemistry , Hydrolysis , Ketones/chemistry , Mass Spectrometry
16.
J Leukoc Biol ; 98(3): 301-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25995205

ABSTRACT

Understanding the molecular mechanisms regulating T cell reactivity is required for successful reprogramming of immune responses in medical conditions, characterized by dysfunctions of the immune system. Nck proteins are cytoplasmic adaptors mediating diverse cellular functions, including TCR signaling. By enhancing TCR signal strength, Nck proteins influence thymic selection and regulate the size and sensitivity of the peripheral T cell repertoire. Here, we investigated the contribution of Nck proteins to CD4(+) T cell differentiation and effector function using Nck.T(-/-) mice. Impaired GC formation and reduced Tfh were observed in Nck.T(-/-) mice after immunization with T cell-dependent antigens. Th2/Tfh-related cytokines, such as IL-4, IL-10, and IL-21, were decreased in Nck.T(-/-) mice T cells. Moreover, an increased susceptibility to cell death of Tfh cells in Nck.T(-/-) mice was associated with decreased levels of Akt phosphorylation. As a result of this dysregulation in Tfh cells of Nck.T(-/-) mice, we found impaired production and affinity maturation of antibodies against T cell-dependent antigens. Thus, Nck proteins not only participate in thymic selection and generation of the peripheral T cell repertoire but also are involved in the differentiation and effector functions of CD4(+) T cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Oncogene Proteins/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Animals , Antibody Formation , Apoptosis , Cytokines/biosynthesis , Gene Deletion , Germinal Center/cytology , Humans , Mice , Oncogene Proteins/deficiency , Transcription Factors/metabolism
17.
Nucleic Acids Res ; 43(W1): W276-82, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25948583

ABSTRACT

While phospho-proteomics studies have shed light on the dynamics of cellular signaling, they mainly describe global effects and rarely explore mechanistic details, such as kinase/substrate relationships. Tools and databases, such as NetworKIN and PhosphoSitePlus, provide valuable regulatory details on signaling networks but rely on prior knowledge. They therefore provide limited information on less studied kinases and fewer unexpected relationships given that better studied signaling events can mask condition- or cell-specific 'network wiring'. SELPHI is a web-based tool providing in-depth analysis of phospho-proteomics data that is intuitive and accessible to non-bioinformatics experts. It uses correlation analysis of phospho-sites to extract kinase/phosphatase and phospho-peptide associations, and highlights the potential flow of signaling in the system under study. We illustrate SELPHI via analysis of phospho-proteomics data acquired in the presence of erlotinib-a tyrosine kinase inhibitor (TKI)-in cancer cells expressing TKI-resistant and -sensitive variants of the Epidermal Growth Factor Receptor. In this data set, SELPHI revealed information overlooked by the reporting study, including the known role of MET and EPHA2 kinases in conferring resistance to erlotinib in TKI sensitive strains. SELPHI can significantly enhance the analysis of phospho-proteomics data contributing to improved understanding of sample-specific signaling networks. SELPHI is freely available via http://llama.mshri.on.ca/SELPHI.


Subject(s)
Protein Kinases/metabolism , Proteomics/methods , Signal Transduction , Software , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Humans , Internet , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , Peptides/chemistry , Peptides/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology
18.
Sci Signal ; 8(371): rs3, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25852190

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous secreted peptide and, in preclinical studies, preferentially induces apoptosis in tumor cells rather than in normal cells. The acquisition of resistance in cells exposed to TRAIL or its mimics limits their clinical efficacy. Because kinases are intimately involved in the regulation of apoptosis, we systematically characterized kinases involved in TRAIL signaling. Using RNA interference (RNAi) loss-of-function and cDNA overexpression screens, we identified 169 protein kinases that influenced the dynamics of TRAIL-induced apoptosis in the colon adenocarcinoma cell line DLD-1. We classified the kinases as sensitizers or resistors or modulators, depending on the effect that knockdown and overexpression had on TRAIL-induced apoptosis. Two of these kinases that were classified as resistors were PX domain-containing serine/threonine kinase (PXK) and AP2-associated kinase 1 (AAK1), which promote receptor endocytosis and may enable cells to resist TRAIL-induced apoptosis by enhancing endocytosis of the TRAIL receptors. We assembled protein interaction maps using mass spectrometry-based protein interaction analysis and quantitative phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL combination therapies to selectively kill cancer cells.


Subject(s)
Adenocarcinoma/metabolism , Apoptosis , Colonic Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Serine-Threonine Kinases/genetics , TNF-Related Apoptosis-Inducing Ligand/genetics
19.
Proc Natl Acad Sci U S A ; 112(13): E1594-603, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25829543

ABSTRACT

Systematic characterization of intercellular signaling approximating the physiological conditions of stimulation that involve direct cell-cell contact is challenging. We describe a proteomic strategy to analyze physiological signaling mediated by the T-cell costimulatory receptor CD28. We identified signaling pathways activated by CD28 during direct cell-cell contact by global analysis of protein phosphorylation. To define immediate CD28 targets, we used phosphorylated forms of the CD28 cytoplasmic region to obtain the CD28 interactome. The interaction profiles of selected CD28-interacting proteins were further characterized in vivo for amplifying the CD28 interactome. The combination of the global phosphorylation and interactome analyses revealed broad regulation of CD28 and its interactome by phosphorylation. Among the cellular phosphoproteins influenced by CD28 signaling, CapZ-interacting protein (CapZIP), a regulator of the actin cytoskeleton, was implicated by functional studies. The combinatorial approach applied herein is widely applicable for characterizing signaling networks associated with membrane receptors with short cytoplasmic tails.


Subject(s)
CD28 Antigens/metabolism , Cell Communication , Gene Expression Regulation , Receptors, Peptide/metabolism , Actins/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , Mass Spectrometry , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Proteomics , Signal Transduction
20.
Structure ; 23(4): 700-12, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25752541

ABSTRACT

Peptide motifs are often used for protein-protein interactions. We have recently demonstrated that ankyrin repeats of ANKRA2 and the paralogous bare lymphocyte syndrome transcription factor RFXANK recognize PxLPxL/I motifs shared by megalin, three histone deacetylases, and RFX5. We show here that that CCDC8 is a major partner of ANKRA2 but not RFXANK in cells. The CCDC8 gene is mutated in 3M syndrome, a short-stature disorder with additional facial and skeletal abnormalities. Two other genes mutated in this syndrome encode CUL7 and OBSL1. While CUL7 is a ubiquitin ligase and OBSL1 associates with the cytoskeleton, little is known about CCDC8. Binding and structural analyses reveal that the ankyrin repeats of ANKRA2 recognize a PxLPxL motif at the C-terminal region of CCDC8. The N-terminal part interacts with OBSL1 to form a CUL7 ligase complex. These results link ANKRA2 unexpectedly to 3M syndrome and suggest novel regulatory mechanisms for histone deacetylases and RFX7.


Subject(s)
Ankyrin Repeat , Ankyrins/chemistry , Carrier Proteins/chemistry , Dwarfism/metabolism , Muscle Hypotonia/metabolism , Spine/abnormalities , Amino Acid Sequence , Ankyrins/metabolism , Binding Sites , Carrier Proteins/metabolism , Cullin Proteins/metabolism , Cytoskeletal Proteins/metabolism , Dwarfism/genetics , HEK293 Cells , Histone Deacetylases/metabolism , Humans , Molecular Sequence Data , Muscle Hypotonia/genetics , Protein Binding , Repressor Proteins/metabolism , Spine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...