Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(25): eadn5276, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905334

ABSTRACT

Revealing the origins of aurorae in Earth's polar cap has long been a challenge since direct precipitation of energetic electrons from the magnetosphere is not always expected in this region of open magnetic field lines. Here, we introduce an exceptionally gigantic aurora filling the entire polar cap region on a day when the solar wind had almost disappeared. By combining ground-based and satellite observations, we proved that this unique aurora was produced by suprathermal electrons streaming directly from the Sun, which is known as "polar rain." High-sensitivity imaging from the ground has visualized complex spatial structures of the polar rain aurora possibly manifesting the internal pattern of the solar wind or even the organizations in the chromosphere of the Sun.

2.
Geophys Res Lett ; 49(16): e2022GL099901, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36249467

ABSTRACT

This study presents multi-instrument observations of persistent large-scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady-state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry-Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 19 UT and 5 UT on 18-19 January 2013 over the Alaska region down to lower midlatitudes. This study showcases the first use of GUVI for the study of LSTADs. These novel GUVI observations demonstrate the potential for the GUVI far ultraviolet emissions to be used for global-scale studies of waves and atmospheric disturbances in the thermosphere, a region lacking in long-term global measurements. These observations typify changes in the radiance from around 140 to 180 km, opening a new window into the behavior of the thermosphere.

3.
J Geophys Res Space Phys ; 127(5): e2021JA030121, 2022 May.
Article in English | MEDLINE | ID: mdl-35865128

ABSTRACT

We investigate the impact of conjugate photoelectrons (CPEs) on the topside (∼600 km altitude) ionosphere at low and midlatitudes using measurements of the ion temperature, density, and composition from the first Republic of China satellite during a period of the high to moderate solar activity (March 1999 to June 2004). Elevated ion temperatures and densities are observed in the dark Northern American-Atlantic sector during the December solstice and in the Australian sector during the June solstice. The oxygen ion fraction and density are also elevated at these locations. These observations indicate that photoelectrons from the conjugate hemisphere heat the local ionospheric plasma. The morphology of the ion temperature in the winter hemisphere is well represented by the solar zenith angle in the sunlit conjugate hemisphere. The CPE hypothesis for the observed ionospheric heating is confirmed by coincident nighttime enhancements of the far ultraviolet airglow measured by the Global Ultraviolet Imager onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite.

4.
Geophys Res Lett ; 48(15): e2021GL094517, 2021 Aug 08.
Article in English | MEDLINE | ID: mdl-35844977

ABSTRACT

Limited observational evidence indicates that ionospheric changes caused by Arctic sudden stratospheric warmings (SSWs) occur at middle latitudes in the Southern Hemisphere. However, it is not known if a similar interhemispheric linkage is produced by Antarctic SSWs. Here we examine thermospheric and ionospheric anomalies observed in September 2019 at middle latitudes in the Northern Hemisphere. We report persistent (at least 30 days) and strong (up to 80%-100%) positive anomalies in the daytime total electron content (TEC) and increases in the thermospheric O/N2 ratio in the western region of North America. However, central and eastern regions of North America experience moderate suppression of TEC reaching 20%-40% of the baseline. Different positive and negative anomalies are observed over the European sector. We hypothesize that regional differences in the TEC response could be related to modulation of thermospheric winds during SSWs, changes in thermospheric composition, and differences in declination angle.

5.
J Geophys Res Space Phys ; 125(9): e2020JA028343, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999808

ABSTRACT

Electron density irregularities on the dayside in the low-latitude F region are understood as remnants (or fossils) of nighttime plasma bubbles. We provide observational evidence of the connection of daytime irregularities to nighttime bubbles and the transport of the daytime irregularities by the vertical motion of the background ionosphere. The distributions of irregularities are derived using the measurements of the ion density by the first Republic of China satellite from March 1999 to June 2004. The seasonal and longitudinal distributions of daytime and nighttime irregularities in low latitudes show a close similarity. The high occurrence rate of daytime irregularities at the longitudes where strong irregularities occur frequently at night provides strong evidence of the association of daytime irregularities with nighttime bubbles. Nighttime irregularities are concentrated in the equatorial region, whereas daytime irregularities spread over broader latitudes. The seasonal and longitudinal variation of the latitudinal spread of daytime irregularities is consistent with the morphologies of plasma density and vertical plasma velocity. The zonal wave number 4 pattern, which corresponds to that in plasma density, is identified in the distribution of daytime irregularities. These observations lead to the conclusion that the morphology of daytime irregularities in the low-latitude F region is dominated by the morphology of bubbles at night and the ionospheric fountain process on the dayside.

SELECTION OF CITATIONS
SEARCH DETAIL
...