Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 940: 173686, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38830425

ABSTRACT

Lead-based ammunition is a significant source of environmental lead and threatens species that scavenge lead-shot carcasses, particularly in areas with intensive shooting. With the impacts of lead on avian scavengers well established, there is increasing focus on the effects of lead on mammalian scavengers. We investigated lead exposure in a morphologically specialized mammalian scavenger, the Tasmanian devil (Sarcophilus harrisii), by analyzing their blood lead levels (BLLs) before and after a marsupial culling program using linear mixed effects models. We compared lead isotope signatures in devil blood to those in the culling ammunition to inform potential source attributions. We sampled 23 devils before culling and 15 after culling, finding no significant difference in mean BLLs pre and post-culling. However, devils captured closer to forestry coupes where culling had occurred had higher BLLs, and a greater proportion of devils displayed elevated BLLs post-culling (33 % compared to 18 % pre-culling). The highest BLL (7.93 µg/dL) was found in a devil post-culling and this individual had lead isotope signatures that matched the ammunition samples analyzed, suggesting the individual was exposed to lead from scavenging on culled carcasses. While 18 % of the devil blood lead samples had isotope signatures consistent with the ammunition samples, most were measurably different, indicating other sources of lead in the landscape. BLLs in our study landscape were similar to published BLLs for wild devils across Tasmania. That said, lead isotope signatures in the blood of individual devils sampled both before and after culling shifted closer to those of ammunition samples post-culling. Our results indicate that while some individual devils may have been exposed to lead from culling, most devils in the landscape did not show evidence of recent exposure. However, even low lead levels can adversely impact wildlife health and immunity, a particular concern for devils, a species endangered by disease.


Subject(s)
Lead , Marsupialia , Animals , Lead/blood , Environmental Pollutants , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Animal Culling
2.
Article in English | MEDLINE | ID: mdl-38693847

ABSTRACT

Lead poisoning is an important global conservation problem for many species of wildlife, especially raptors. Despite the increasing number of individual studies and regional reviews of lead poisoning of raptors, it has been over a decade since this information has been compiled into a comprehensive global review. Here, we summarize the state of knowledge of lead poisoning of raptors, we review developments in manufacturing of non-lead ammunition, the use of which can reduce the most pervasive source of lead these birds encounter, and we compile data on voluntary and regulatory mitigation options and their associated sociological context. We support our literature review with case studies of mitigation actions, largely provided by the conservation practitioners who study or manage these efforts. Our review illustrates the growing awareness and understanding of lead exposure of raptors, and it shows that the science underpinning this understanding has expanded considerably in recent years. We also show that the political and social appetite for managing lead ammunition appears to vary substantially across administrative regions, countries, and continents. Improved understanding of the drivers of this variation could support more effective mitigation of lead exposure of wildlife. This review also shows that mitigation strategies are likely to be most effective when they are outcome driven, consider behavioural theory, local cultures, and environmental conditions, effectively monitor participation, compliance, and levels of raptor exposure, and support both environmental and human health.

3.
Environ Pollut ; 332: 122004, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37302786

ABSTRACT

Lead (Pb) toxicity, through ingestion of lead ammunition in carcasses, is a threat to scavenging birds worldwide, but has received little attention in Australia. We analyzed lead exposure in the wedge-tailed eagle (Aquila audax), the largest raptor species found in mainland Australia and a facultative scavenger. Eagle carcasses were collected opportunistically throughout south-eastern mainland Australia between 1996 and 2022. Lead concentrations were measured in bone samples from 62 animals via portable X-ray fluorescence (XRF). Lead was detected (concentration >1 ppm) in 84% (n = 52) of the bone samples. The mean lead concentration of birds in which lead was detected was 9.10 ppm (±SE 1.66). Bone lead concentrations were elevated (10-20 ppm) in 12.9% of samples, and severe (>20 ppm) in 4.8% of samples. These proportions are moderately higher than equivalent data for the same species from the island of Tasmania, and are comparable to data from threatened eagle species from other continents. Lead exposure at these levels is likely to have negative impacts on wedge-tailed eagles at the level of the individual and perhaps at a population level. Our results suggest that studies of lead exposure in other Australian avian scavenger species are warranted.


Subject(s)
Eagles , Lead Poisoning , Animals , Lead/analysis , Australia , Weapons
4.
Sci Total Environ ; 789: 147998, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34051503

ABSTRACT

Lead (Pb) toxicity from ammunition has been shown to be a threat to scavenging birds across the globe. Toxic levels of lead have recently been found in Australia's largest bird of prey, the wedge-tailed eagle (Aquila audax), through inductively coupled plasma mass spectrometry (ICP-MS) analysis of liver and bone samples. However, ICP-MS is consumptive (causing damage to archived specimens), time-consuming, and expensive. For these reasons, portable X-ray fluorescence (XRF) devices have been optimized to measure bone lead in North American avian species, humans, and other environmental samples. In this study, we assessed portable XRF for bone lead measurement in Australian raptors in two parts. First, we validated the method using tissues from wedge-tailed eagles from Tasmania (A. a. fleayi), analysing bone samples taken from sites on the femur immediately adjacent to sites for which we had ICP-MS data (n = 89). Second, we measured lead via portable XRF in the skulls of wedge-tailed eagles from south-eastern mainland Australia (A. a. audax) collected during a criminal prosecution (n = 92). Portable XRF bone lead measurement demonstrated an excellent correlation with ICP-MS results using root-transformed regression (R2 = 0.88). Calculated equivalent ICP-MS values revealed that greater than 50% of the eagles from mainland Australia had elevated lead levels (>10 mg/kg) and 13% had severe lead exposure (>20 mg/kg). Our results support previous studies of North American avian species and suggest that portable XRF could be a useful and inexpensive option for measurement of bone lead in Australian scavenger species.


Subject(s)
Eagles , Animals , Australia , Fluorescence , Humans , Lead/analysis , South Australia , Spectrometry, X-Ray Emission , Tasmania , X-Rays
5.
Sci Total Environ ; 788: 147673, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34022576

ABSTRACT

Anticoagulant rodenticides (ARs) used to control mammalian pest populations cause secondary exposure of predatory species throughout much of the world. It is important to understand the drivers of non-target AR exposure patterns as context for assessing long-term effects and developing effective mitigation for these toxicants. In Australia, however, little is known about exposure and effects of ARs on predators. We detected AR residues in 74% of 50 opportunistically collected carcasses of the Tasmanian wedge-tailed eagle (Aquila audax fleayi), an endangered apex predator. In 22% of birds tested, or 31% of those exposed, liver concentrations of second generation ARs (SGARs) were >0.1 mg/kg ww. Eagles were exposed to flocoumafen, a toxicant only available from agricultural suppliers, at an exceptionally high rate (40% of birds tested). Liver SGAR concentrations were positively associated with the proportion of agricultural habitat and human population density in the area around where each eagle died. The high exposure rate in a species not known to regularly prey upon synanthropic rodents supports the hypothesis that apex predators are vulnerable to SGARs. Our results indicate that AR exposure constitutes a previously unrecognized threat to Tasmanian wedge-tailed eagles and highlight the importance of efforts to address non-target AR exposure in Australia.


Subject(s)
Rodenticides , Animals , Anticoagulants/analysis , Australia , Ecosystem , Environmental Monitoring , Rodenticides/analysis , Rodenticides/toxicity
6.
Environ Toxicol Chem ; 40(1): 219-230, 2021 01.
Article in English | MEDLINE | ID: mdl-33090553

ABSTRACT

Lead poisoning, mainly through incidental ingestion of lead ammunition in carcasses, is a threat to scavenging and predatory bird species worldwide. In Australia, shooting for animal control is widespread, and a range of native scavenging species are susceptible to lead exposure. However, the prevalence of lead exposure in Australia's scavenging and predatory birds is largely unknown. We evaluated the degree to which the Tasmanian wedge-tailed eagle (Aquila audax fleayi), an endangered Australian raptor and facultative scavenger, showed evidence of lead exposure. We detected lead in 100% of femur and liver tissues of 109 eagle carcasses opportunistically collected throughout Tasmania between 1996 and 2018. Concentrations were elevated in 10% of 106 liver (>6 mg/kg dry wt) and 4% of 108 femur (>10 mg/kg dry wt) samples. We also detected lead in 96% of blood samples taken from 24 live nestlings, with 8% at elevated concentrations (>10 µg/dL). Of the liver samples with elevated lead, 73% had lead207/206 isotope ratios within the published range of lead-based bullets available in Tasmania. These first comprehensive data on lead exposure of an Australian raptor are comparable to those for raptor studies elsewhere that identify lead-based ammunition exposure as a conservation threat. Our findings highlight the importance of further research and efforts to address lead contamination throughout the Tasmanian ecosystem and in other Australian regions. Environ Toxicol Chem 2021;40:219-230. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Eagles , Animals , Australia , Drug Combinations , Ecosystem , Glycerol , Lead , Salicylates
SELECTION OF CITATIONS
SEARCH DETAIL
...