Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7: 41204, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28145470

ABSTRACT

Although the search for quantitative trait loci for behaviour remains a considerable challenge, the complicated genetic architecture of quantitative traits is beginning to be understood. The current project utilised heterogeneous stock (HS) male mice (n = 580) to investigate the genetic basis for brain weights, activity, anxiety and cognitive phenotypes. We identified 126 single nucleotide polymorphisms (SNPs) in genes involved in regulation of neurotransmitter systems, nerve growth/death and gene expression, and subsequently investigated their associations with changes in behaviour and/or brain weights in our sample. We found significant associations between four SNP-phenotype pairs, after controlling for multiple testing. Specificity protein 2 (Sp2, rs3708840), tryptophan hydroxylase 1 (Tph1, rs262731280) and serotonin receptor 3A (Htr3a, rs50670893) were associated with activity/anxiety behaviours, and microtubule-associated protein 2 (Map2, rs13475902) was associated with cognitive performance. All these genes except for Tph1 were expressed in the brain above the array median, and remained significantly associated with relevant behaviours after controlling for the family structure. Additionally, we found evidence for a correlation between Htr3a expression and activity. We discuss our findings in the light of the advantages and limitations of currently available mouse genetic tools, suggesting further directions for association studies in rodents.


Subject(s)
Behavior, Animal , Brain/metabolism , Genetic Association Studies/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Gene Expression , Genetic Heterogeneity , Male , Mice , Microtubule-Associated Proteins/genetics , Receptors, Serotonin, 5-HT3/genetics , Sp2 Transcription Factor/genetics , Tryptophan Hydroxylase/genetics
2.
Psychiatr Genet ; 26(5): 211-7, 2016 10.
Article in English | MEDLINE | ID: mdl-27315048

ABSTRACT

OBJECTIVES: Clozapine is an atypical antipsychotic primarily prescribed for treatment-resistant schizophrenia. We tested the specific effect of clozapine versus other drug treatments on whole-blood gene expression in a sample of patients with psychosis from the UK. METHODS: A total of 186 baseline whole-blood samples from individuals receiving treatment for established psychosis were analysed for gene expression on Illumina HumanHT-12.v4 BeadChips. After standard quality-control procedures, 152 samples remained, including 55 from individuals receiving clozapine. In a within-case study design, weighted gene correlation network analysis was used to identify modules of coexpressed genes. The influence of mood stabilizers, lithium carbonate/lithium citrate and sodium valproate was studied to identify their possible roles as confounders. RESULTS: Individuals receiving clozapine as their only antipsychotic (clozapine monotherapy) had a nominal association with one gene-expression module, whereas no significant change in gene expression was found for other drugs. CONCLUSION: Overall, this study does not provide evidence that clozapine treatment induces medium to large different gene-expression patterns in human whole blood versus other antipsychotic treatments. This does not rule out the possibility of smaller effects as observed for other common antipsychotic treatments.


Subject(s)
Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics , Adult , Antipsychotic Agents/blood , Clozapine/blood , Female , Gene Expression/drug effects , Gene Expression Profiling , Humans , Male , Middle Aged , Psychotic Disorders/blood , Randomized Controlled Trials as Topic , Risperidone/therapeutic use , Schizophrenia/blood
3.
Br J Psychiatry ; 209(3): 202-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27151072

ABSTRACT

BACKGROUND: Recent studies point to overlap between neuropsychiatric disorders in symptomatology and genetic aetiology. AIMS: To systematically investigate genomics overlap between childhood and adult attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD). METHOD: Analysis of whole-genome blood gene expression and genetic risk scores of 318 individuals. Participants included individuals affected with adult ADHD (n = 93), childhood ADHD (n = 17), MDD (n = 63), ASD (n = 51), childhood dual diagnosis of ADHD-ASD (n = 16) and healthy controls (n = 78). RESULTS: Weighted gene co-expression analysis results reveal disorder-specific signatures for childhood ADHD and MDD, and also highlight two immune-related gene co-expression modules correlating inversely with MDD and adult ADHD disease status. We find no significant relationship between polygenic risk scores and gene expression signatures. CONCLUSIONS: Our results reveal disorder overlap and specificity at the genetic and gene expression level. They suggest new pathways contributing to distinct pathophysiology in psychiatric disorders and shed light on potential shared genomic risk factors.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Depressive Disorder, Major/genetics , Gene Expression Profiling , Adult , Attention Deficit Disorder with Hyperactivity/complications , Autism Spectrum Disorder/complications , Case-Control Studies , Child , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Young Adult
4.
Am J Med Genet B Neuropsychiatr Genet ; 171(6): 827-38, 2016 09.
Article in English | MEDLINE | ID: mdl-27090961

ABSTRACT

Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aggression/physiology , Animals , Behavior, Animal/physiology , Disease Models, Animal , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Genes, fos/genetics , Genes, fos/physiology , Mice , Social Behavior , Transcriptome/genetics , Zebrafish/genetics
5.
Epigenetics ; 11(1): 24-35, 2016.
Article in English | MEDLINE | ID: mdl-26786711

ABSTRACT

While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood.


Subject(s)
Alleles , Brain/metabolism , DNA Methylation , Genome, Human , Organ Specificity , Epigenesis, Genetic , Female , Genomic Imprinting , Genotype , Humans , Male , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
6.
Neurogenetics ; 15(4): 255-66, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25142712

ABSTRACT

Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.


Subject(s)
Aggression/physiology , Gene Regulatory Networks , Prefrontal Cortex/metabolism , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Genetic Variation , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred Strains/genetics
7.
Mol Brain ; 5: 42, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23216893

ABSTRACT

BACKGROUND: Insulin-like growth factor 2 (Igf2) is a paternally expressed imprinted gene regulating fetal growth, playing an integral role in the development of many tissues including the brain. The parent-of-origin specific expression of Igf2 is largely controlled by allele-specific DNA methylation at CTCF-binding sites in the imprinting control region (ICR), located immediately upstream of the neighboring H19 gene. Previously we reported evidence of a negative correlation between DNA methylation in this region and cerebellum weight in humans. RESULTS: We quantified cerebellar DNA methylation across all four CTCF binding sites spanning the murine Igf2/H19 ICR in an outbred population of Heterogeneous Stock (HS) mice (n = 48). We observe that DNA methylation at the second and third CTCF binding sites in the Igf2/H19 ICR shows a negative relationship with cerebellar mass, reflecting the association observed in human post-mortem cerebellum tissue. CONCLUSIONS: Given the important role of the cerebellum in motor control and cognition, and the link between structural cerebellar abnormalities and neuropsychiatric phenotypes, the identification of epigenetic factors associated with cerebellum growth and development may provide important insights about the etiology of psychiatric disorders.


Subject(s)
Cerebellum/anatomy & histology , DNA Methylation/genetics , Genomic Imprinting/genetics , Insulin-Like Growth Factor II/genetics , Locus Control Region/genetics , RNA, Long Noncoding/genetics , Alleles , Animals , Animals, Outbred Strains , Binding Sites , CCCTC-Binding Factor , Cerebellum/metabolism , CpG Islands/genetics , Genetic Loci , Humans , Male , Mice , Organ Size/genetics , Repressor Proteins/metabolism
8.
Pharmacogenet Genomics ; 22(11): 765-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23026812

ABSTRACT

RATIONALE: Monoaminergic imbalances play a role in the pathogenesis of depression and most common antidepressant drugs act on monoamine neurotransmitters. However, the lag time between restoring neurochemical balance and symptom improvement suggests that the response to drugs involves complex biological events downstream of primary targets that have not yet been fully characterized. Here, we report a mouse mRNA expression study to evaluate the effect of escitalopram (a serotonergic antidepressant) and nortriptyline (a noradrenergic antidepressant) on genes that are involved in the pathogenesis of depression and to assess the similarities and differences between two drugs on gene expression levels. METHODS: Genome-wide RNA expression data from the hippocampal tissues of four inbred mouse strains (129S1/SvlmJ, C57LB/6J, DBA/2J and FVB/NJ) were treated with varying doses of either nortriptyline (NRI) or escitalopram (SSRI) and subjected to two different depressogenic protocols. Following robust multichip average normalization, we applied the nonparametric RankProd approach to identify differentially expressed genes in response to drugs across the four strains. Pathway analysis was subsequently carried out on top-ranking genes to gain further biological insights. RESULTS: A total of 371 genes were significantly differentially expressed in response to nortriptyline, whereas 383 were altered by escitalopram. Genes involved in the pathways of integrin signalling (Fnlb, Mapk1, Mapk8), synaptic transmission (Cacnb1, Dnajc5, Kcnma1, Slc1a2) or Huntington disease (Crebbp, Dlg4, Ncor1) were altered by both nortriptyline and escitalopram. Several biological processes and pathways were identified, which could explain the divergence between the molecular mechanisms of nortriptyline and escitalopram. CONCLUSION: From a large-scale animal study, we obtain gene sets comprised of commonly and differentially expressed genes in response to different antidepressant drug treatments. The results may help to characterize the response to antidepressant treatment, shed further light on the neurobiology of depressive disorders and inform future animal and human studies. Finally, the top-ranking pathways from Ingenuity provide further evidence for the hippocampal neurogenesis hypothesis of major depressive disorders.


Subject(s)
Antidepressive Agents/pharmacology , Citalopram/pharmacology , Depression/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Nortriptyline/pharmacology , RNA, Messenger/metabolism , Animals , Antidepressive Agents/therapeutic use , Citalopram/therapeutic use , Depression/pathology , Disease Models, Animal , Hippocampus/pathology , Mice , Neurogenesis/drug effects , Nortriptyline/therapeutic use
9.
BMC Genomics ; 13: 476, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22974136

ABSTRACT

BACKGROUND: miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. RESULTS: We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA's expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. CONCLUSIONS: The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this approach for discovery of new functional roles and downstream processes regulated by miRNA.


Subject(s)
Genetic Variation , Hippocampus/metabolism , Mice, Inbred C57BL/genetics , Mice, Inbred DBA/genetics , MicroRNAs/genetics , Quantitative Trait Loci , Animals , Behavior, Animal , Gene Expression Regulation , Male , Mice , MicroRNAs/metabolism , Phenotype , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Proteomics ; 12(14): 2355-65, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22696452

ABSTRACT

In this study, we present a pharmacoproteomic investigation of response to antidepressants two inbred strains. Our aim was to uncover molecular mechanisms underlying antidepressant action and identify new biomarkers to determine therapeutic response to two antidepressants with proven efficacy in the treatment of depression but divergent mechanisms of action. Mice were treated with the pro-noradrenergic drug nortriptyline, the pro-serotonergic drug escitalopram or saline. Quantitative proteomic analyses were undertaken on hippocampal tissue from a study design that used two inbred mouse strains, two depressogenic protocols and a control condition, (maternal separation, chronic mild stress, control), two antidepressant drugs and two dosing protocols. The proteomic analysis was aimed at the identification of specific drug-response markers. Complementary approaches, 2DE and isobaric tandem mass tagging (TMT), were applied to the selected experimental groups. To investigate the relationship between proteomic profiles, depressogenic protocols and drug response, 2DE and TMT data sets were analysed using multivariate methods. The results highlighted significant strain- and stress-related differences across both 2DE and TMT data sets and identified the three gene products involved in serotonergic (PXBD5, YHWAB, SLC25A4) and one in noradrenergic antidepressant action (PXBD6).


Subject(s)
Antidepressive Agents/pharmacology , Hippocampus/drug effects , Proteome/drug effects , Stress, Psychological/drug therapy , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Adenine Nucleotide Translocator 1/genetics , Adenine Nucleotide Translocator 1/metabolism , Animals , Citalopram/pharmacology , Electrophoresis, Gel, Two-Dimensional , Female , Hippocampus/chemistry , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Multivariate Analysis , Nortriptyline/pharmacology , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Principal Component Analysis , Proteome/analysis , Proteomics , Reproducibility of Results , Tandem Mass Spectrometry , Weaning
11.
Pharmacogenet Genomics ; 21(12): 779-89, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22016050

ABSTRACT

RATIONALE: Selecting an effective treatment for patients with major depressive disorder is a perpetual problem for psychiatrists. It is of particular interest to explore the interaction between genetic predisposition and environmental factors. OBJECTIVES: Mouse inbred strains vary in baseline performance in depression-related behaviour tests, which were originally validated as tests of antidepressant response. Therefore, we investigated interactions between environmental stress, genotype, and drug response in a multifactorial behaviour study. METHOD: Our study design included four inbred mouse strains (129S1/SvlmJ, C57LB/6J, DBA/2J and FVB/NJ) of both sexes, two subjected to environmental manipulations (maternal separation and unpredictable chronic mild stress) and two representative of treatment with antidepressants (escitalopram and nortryptiline vs. vehicle). The mice treated with antidepressants were further divided into those administered acute (1 day) and subchronic (14 days) regimes, giving 144 experimental groups in all, each with at least seven animals. All animals were tested using the Porsolt forced-swim test (FST) and the hole-board test. RESULTS: Despite a 24-h maternal separation (MS) or a 14-day unpredictable chronic mild stress protocol, most animals seemed to be resilient to the stress induced. One compelling finding is the long-lasting, strain-specific effect of MS resulting in an increased depression-like behaviour in the Porsolt FST and elevated anxiety-related behaviour in the hole-board test seen in 129S1/SvImJ mice. Nortriptyline was effective in reversing the effect of MS in the FST in 129S1/SvlmJ male mice. CONCLUSION: A single 24-h maternal separation of pups from their mother on postnatal day 9 is a sufficient insult to result in a depression-like phenotype in adult 129S1/SvImJ mice but not in C57LB/6 J, DBA/2 J, and FVB/NJ mice.


Subject(s)
Antidepressive Agents/pharmacology , Stress, Psychological/drug therapy , Stress, Psychological/psychology , Animals , Citalopram/pharmacology , Female , Genotype , Male , Maternal Deprivation , Mice , Mice, Inbred Strains , Nortriptyline/pharmacology , Social Environment , Stress, Psychological/genetics
12.
Biol Psychiatry ; 69(4): 360-5, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-20970119

ABSTRACT

BACKGROUND: Antidepressant drugs are used as first-line treatment in depression, but response has been shown to be highly heterogeneous, with drugs often failing to have the desired therapeutic effect. We report on an integrative analysis from the Genome-Based Therapeutic Drugs for Depression (GENDEP) study using gene expression from mice to inform prioritization in a human pharmacogenetic study. METHODS: The same two antidepressants were used in mice and humans: escitalopram (a serotonin reuptake inhibitor) and nortriptyline (a norepinephrine reuptake inhibitor). The animal study used four inbred strains of mice (129S1/SvlmJ, C57LB/6J, DBA/2J, and FVB/NJ). Hippocampus mRNA levels were measured in 144 animals using the Affymetrix MOE 430 v2 chip. RESULTS: Based on gene-expression analysis of strain-by-drug interactions, 17 genes differentially expressed with nortriptyline or escitalopram versus saline were prioritized in the human pharmacogenetic analysis. Single nucleotide polymorphisms tagging common sequence variation in human orthologs of these genes were tested for association with response to antidepressants in 706 participants of the GENDEP human pharmacogenetic study, treated with escitalopram or nortriptyline for 12 weeks, with available high-quality Illumina 610 quad array genotyping. Several polymorphisms in the protein phosphatase 1A gene (PPM1A) remained significantly associated with response to nortriptyline in humans after correction for multiple comparisons within the gene. PPM1A encodes a phosphatase involved in mitogen-activated protein kinase signaling and cell stress response. CONCLUSIONS: Convergent evidence from mice and humans suggests a role of the PPM1A in response to noradrenergic but not serotonergic antidepressants.


Subject(s)
Antidepressive Agents/therapeutic use , Citalopram/therapeutic use , Depressive Disorder/drug therapy , Depressive Disorder/genetics , Hippocampus/metabolism , Nortriptyline/therapeutic use , Phosphoprotein Phosphatases/genetics , Adult , Aged , Animals , Antidepressive Agents/pharmacology , Citalopram/pharmacology , Depressive Disorder/metabolism , Female , Gene Expression , Genotype , Humans , Male , Mice , Mice, Inbred Strains , Middle Aged , Nortriptyline/pharmacology , Phosphoprotein Phosphatases/metabolism , Polymorphism, Genetic , Protein Phosphatase 2C , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Physiol Behav ; 99(3): 301-16, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-19931548

ABSTRACT

The use of large scale behavioural batteries for the discovery of novel genes underlying behavioural variation has considerable potential. Building a broad behavioural profile serves to better understand the complex interplay of overlapping genetic factors contributing to various paradigms, underpinning a systems biology approach. We devised a battery of tests to dissect and characterise the genetic bases of behavioural phenotypes, but firstly undertook to evaluate several aspects considered potentially confounding for mapping quantitative traits. These included investigating: individual versus sibling housing; testing at different times during the day; battery versus non-battery testing; and initial placement within the light-dark box. Furthermore, we assessed how behavioural profiles differed in our battery across 8 inbred strains. Overall, we found the behavioural battery was most sensitive to paired-housing effects, where weight and some measures in the open field, elevated plus maze and light-dark box differed significantly between sibling housed and singly housed mice. Few large effects were found for testing at different times of day and battery versus non-battery testing. Placement in the light-dark box influenced activity and duration measures, which profoundly affected the analysis outcome. Behavioural profiles across eight inbred strains (C57BL/6J, 129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, DBA/2J, FVB/NJ, and SJL/J) demonstrated some robust strain ranking differences for measures in the open field and light-dark tests in our battery. However, some tests such as the elevated plus maze produced incongruous strain ranking effects across measures. The findings reported herein bear out the promise of behavioural batteries for mapping naturally occurring variation in mouse reference populations.


Subject(s)
Behavior, Animal , Genetic Testing/methods , Genetics, Behavioral/methods , Mice, Inbred Strains/psychology , Species Specificity , Animals , Housing, Animal , Male , Mice , Neuropsychological Tests , Photoperiod , Quantitative Trait, Heritable
14.
Mamm Genome ; 19(7-8): 552-60, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18594913

ABSTRACT

Micro-RNAs (miRNAs) are short, single-stranded, noncoding RNAs that are involved in the regulation of protein-coding genes at the level of messenger RNA (mRNA). They are involved in the regulation of numerous traits, including developmental timing, apoptosis, immune function, and neuronal development. To better understand how the expression of the miRNAs themselves is regulated, we looked for miRNA expression differences among four mouse inbred strains, A/J, BALB/cJ, C57BL/6J, and DBA/2J, in one tissue, the hippocampus. A total of 166 miRNA RT-PCR assays were used to screen RNA pools for each strain. Twenty miRNA species that were markedly different between strains were further investigated using eight individual samples per strain, and 11 miRNAs showed significant differences across strains (p < 0.05). This is the first observation of miRNA expression differences across inbred mice strains. We conducted an in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression to better characterise the effects of these miRNAs on both phenotype and the regulation of mRNA expression. This approach has allowed us to nominate miRNAs that have potential roles in anxiety, exploration, and learning and memory.


Subject(s)
Hippocampus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Analysis of Variance , Animals , Female , Gene Expression Regulation , Genetic Testing , Male , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred Strains , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Characteristics , Species Specificity
15.
Mamm Genome ; 18(6-7): 482-91, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17619104

ABSTRACT

Immobility in the tail suspension test (TST) is considered a model of despair in a stressful situation, and acute treatment with antidepressants reduces immobility. Inbred strains of mouse exhibit widely differing baseline levels of immobility in the TST and several quantitative trait loci (QTLs) have been nominated. The labor of manual scoring and various scoring criteria make obtaining robust data and comparisons across different laboratories problematic. Several studies have validated strain gauge and video analysis methods by comparison with manual scoring. We set out to find objective criteria for automated scoring parameters that maximize the biological information obtained, using a video tracking system on tapes of tail suspension tests of 24 lines of the BXD recombinant inbred panel and the progenitor strains C57BL/6J and DBA/2J. The maximum genetic effect size is captured using the highest time resolution and a low mobility threshold. Dissecting the trait further by comparing genetic association of multiple measures reveals good evidence for loci involved in immobility on chromosomes 4 and 15. These are best seen when using a high threshold for immobility, despite the overall better heritability at the lower threshold. A second trial of the test has greater duration of immobility and a completely different genetic profile. Frequency of mobility is also an independent phenotype, with a distal chromosome 1 locus.


Subject(s)
Automation , Chromosome Mapping , Hindlimb Suspension/methods , Quantitative Trait Loci , Animals , Crosses, Genetic , Genotype , Immobilization/physiology , Lod Score , Male , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Phenotype , Research Design
16.
Behav Genet ; 35(5): 675-92, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16184494

ABSTRACT

This report includes the first sibling study of mouse behavior, and presents evidence for a heritable general cognitive ability (g) factor influencing cognitive batteries. Data from a population of male and female outbred mice (n = 84), and a replication study of male sibling pairs (n = 167) are reported. Arenas employed were the T-maze, the Morris water maze, the puzzle box, the Hebb-Williams maze, object exploration, a water plus-maze, and a second food-puzzle arena. The results show a factor structure consistent with the presence of g in mice. Employing one score per arena, this factor accounts for 41% of the variance in the first study (or 36% after sex regression) and 23% in the second, where this factor also showed sibling correlations of 0.17-0.21, which translates into an upper-limit heritability estimate of around 40%. Reliabilities of many tasks are low and consequently set an even lower ceiling for inter-arena or sibling correlations. Nevertheless, the factor structure is seen to remain fairly robust across permutations of the battery composition and the current findings fit well with other recent studies.


Subject(s)
Cognition/physiology , Maze Learning/physiology , Problem Solving/physiology , Quantitative Trait, Heritable , Animals , Factor Analysis, Statistical , Female , Hybridization, Genetic , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Models, Animal , Reproducibility of Results , Statistics, Nonparametric
17.
Behav Genet ; 34(6): 621-30, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15520518

ABSTRACT

PWD/Ph is an inbred mouse strain derived from wild mice trapped in central Czech Republic. These mice are of the Mus musculus musculus subspecies, whose ancestors separated from those of Mus musculus domesticus about one million years ago. There is a high degree of variation in the genomic sequence and a wide range of phenotypes between PWD/Ph and standard laboratory inbred mouse strains, the genomes of which are principally Mus musculus domesticus in origin, making PWD/Ph mice an useful resource for complex trait research. As a first step in taking advantage of this resource, a preliminary characterization of the behavior of PWD/Ph mice was performed. Groups of 10 PWD/Ph and C57BL/6J male mice were tested in the open field, novel object exploration task and Morris water maze. PWD/Ph were marginally more anxious than C57BL/6J mice in the open field but subsequently displayed much higher levels of exploration and lower anxiety than C57BL/6J mice following introduction of a novel object. As C57BL/6J itself is rated as highly explorative among classical inbred strains, PWD/Ph probably represents an extreme among mouse strains for this specific behavior. PWD/Ph and C57BL/6J mice differed in their water escape training profiles in the Morris water maze, perhaps reflecting different motivational factors. However, there were no differences in overall cognitive ability (spatial learning) as both groups learned to find the hidden platform and performed equally well when the location of the platform was changed. This is the first quantification of the behavior of PWD/Ph mice and the results are promising for the potential of the consomic panel currently being generated with PWD/Ph and C57BL/6J as a tool for the molecular dissection of behavior.


Subject(s)
Exploratory Behavior , Maze Learning/physiology , Mice, Inbred C57BL/genetics , Mice, Inbred Strains/genetics , Animals , Animals, Wild , Mice , Mice, Inbred C57BL/psychology , Mice, Inbred Strains/psychology , Reaction Time , Species Specificity
18.
Eur J Neurosci ; 19(9): 2576-82, 2004 May.
Article in English | MEDLINE | ID: mdl-15128411

ABSTRACT

Mouse inbred strains differ in many aspects of their phenotypes, and it is known that gene expression does so too. This gives us an opportunity to isolate the genetic aspect of variation in expression and compare it to other phenotypic variables. We have investigated these issues using an eight-strain expression profile comparison with four replicates per strain on Affymetrix MGU74av2 GeneChips focusing on one well-defined brain tissue (the hippocampus). We identified substantial strain-specific variation in hippocampal gene expression, with more than two hundred genes showing strain differences by a very conservative criterion. Many such genetically driven differences in gene expression are likely to result in functional differences including differences in behaviour. A large panel of inbred strains could be used to identify genes functionally involved in particular phenotypes, similar to genetic correlation. The genetic correlation between expression profiles and function is potentially very powerful, especially given the current large-scale generation of phenotypic data on multiple strains (the Mouse Phenome Project). As an example, the strongest genetic correlation between more than 200 probe sets showing significant differences among our eight inbred strains and a ranking of these strains by aggression phenotype was found for Comt, a gene known to be involved in aggression.


Subject(s)
Behavior, Animal/physiology , Gene Expression Profiling/methods , Hippocampus/physiology , Mice, Inbred Strains/genetics , Analysis of Variance , Animals , Hybridization, Genetic , Male , Mice , RNA/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...