Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 68(3): 577-87, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25680769

ABSTRACT

The contaminant release from estuarine sediment due to pH changes was investigated using a modified CEN/TS 14429 pH-dependence leaching test. The test is performed in the range of pH values of 0-14 using deionised water and seawater as leaching solutions. The experimental conditions mimic different circumstances of the marine environment due to the global acidification, carbon dioxide (CO2) leakages from carbon capture and sequestration technologies, and accidental chemical spills in seawater. Leaching test results using seawater as leaching solution show a better neutralisation capacity giving slightly lower metal leaching concentrations than when using deionised water. The contaminated sediment shows a low base-neutralisation capacity (BNCpH 12 = -0.44 eq/kg for deionised water and BNCpH 12 = -1.38 eq/kg for seawater) but a high acid-neutralisation capacity when using deionised water (ANCpH 4 = 3.58 eq/kg) and seawater (ANCpH 4 = 3.97 eq/kg). Experimental results are modelled with the Visual MINTEQ geochemical software to predict metal release from sediment using both leaching liquids. Surface adsorption to iron- and aluminium-(hydr)oxides was applied for all studied elements. The consideration of the metal-organic matter binding through the NICA-Donnan model and Stockholm Humic Model for lead and copper, respectively, improves the former metal release prediction. Modelled curves can be useful for the environmental impact assessment of seawater acidification due to its match with the experimental values.


Subject(s)
Estuaries , Geologic Sediments/chemistry , Metals/analysis , Models, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Seawater/chemistry
2.
Environ Pollut ; 171: 174-84, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22926654

ABSTRACT

The pH change and the release of organic matter and metals from sediment, due to the potential CO(2) acidified seawater leakages from a CCS (Carbon Capture and Storage) site are presented. Column leaching test is used to simulate a scenario where a flow of acidified seawater is in contact with recent contaminated sediment. The behavior of pH, dissolved organic carbon (DOC) and metals As, Cd, Cr, Cu, Ni, Pb, Zn, with liquid to solid (L/S) ratio and pH is analyzed. A stepwise strategy using empirical expressions and a geochemical model was conducted to fit experimental release concentrations. Despite the neutralization capacity of the seawater-carbonate rich sediment system, important acidification and releases are expected at local scale at lower pH. The obtained results would be relevant as a line of evidence input of CCS risk assessment, in an International context where strategies to mitigate the climate change would be applied.


Subject(s)
Carbon Dioxide/chemistry , Geologic Sediments/chemistry , Metals/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Carbon Dioxide/analysis , Carbon Sequestration , Environmental Monitoring , Estuaries , Hydrogen-Ion Concentration , Metals/chemistry , Models, Chemical , Risk Assessment , Spain , Water Pollutants, Chemical/chemistry
3.
Environ Pollut ; 162: 29-39, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22243844

ABSTRACT

One of the main risks of CCS (Carbon Capture and Storage) is CO(2) leakage from a storage site. The influence of CO(2) leakage on trace metals leaching from contaminated marine sediment in a potential storage area (Northern Spain) is addressed using standardized leaching tests. The influence of the pH of the leaching solution on the leachates is evaluated using deionized water, natural seawater and acidified seawater at pH = 5, 6 and 7, obtained by CO(2) bubbling. Equilibrium leaching tests (EN 12457) were performed at different liquid-solid ratios and the results of ANC/BNC leaching test (CEN/TS 15364) were modeled using Visual Minteq. Equilibrium tests gave values of the final pH for all seawater leachates between 7 and 8 due to the high acid neutralization capacity of the sediment. Combining leaching test results and geochemical modeling provided insight in the mechanisms and prediction of trace metals leaching in acidified seawater environment.


Subject(s)
Carbon Dioxide/analysis , Geologic Sediments/analysis , Metals/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...