Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 3014, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080261

ABSTRACT

A rigidification strategy was applied to the preclinical candidate donecopride, an acetylcholinesterase inhibitor possessing 5-HT4R agonist activity. Inspired by promising bioactive benzisoxazole compounds, we have conducted a pharmacomodulation study to generate a novel series of multitarget directed ligands. The chemical synthesis of the ligand was optimized and compounds were evaluated in vitro against each target and in cellulo. Structure-activity relationship was supported by docking analysis in human acetylcholinesterase binding site. Among the synthesized compounds, we have identified a novel hybrid 32a (3-[2-[1-(cyclohexylmethyl)-4-piperidyl]ethyl]-4-methoxy-1,2-benzoxazole) able to display nanomolar acetylcholinesterase inhibitory effects and nanomolar Ki for 5-HT4R.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Drug Design , Isoxazoles/therapeutic use , Receptors, Serotonin, 5-HT4/metabolism , Alzheimer Disease/pathology , Binding Sites , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Donepezil/chemistry , Donepezil/pharmacology , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Isoxazoles/pharmacology , Models, Molecular , Molecular Docking Simulation
2.
Eur J Med Chem ; 182: 111596, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31419776

ABSTRACT

Facing the complexity of Alzheimer's disease (AD), it is now currently admitted that a therapeutic pleiotropic intervention is needed to alter its progression. Among the major hallmarks of the disease, the amyloid pathology and the oxidative stress are closely related. We propose in this study to develop original Multi-Target Directed Ligands (MTDL) able to impact at the same time Aß protein accumulation and toxicity of Reactive Oxygen Species (ROS) in neuronal cells. Such MTDL were obtained by linking on a central piperidine two scaffolds of interest: a typical aminochlorobenzophenone present in numerous 5-HT4R agonists, and diverse antioxidant chemotypes. Interestingly, the most active compound 9g possesses a Ki of 12.7 nM towards 5-HT4R and an antioxidant activity in vitro and in cellulo.


Subject(s)
Antioxidants/pharmacology , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/metabolism , COS Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Picrates/antagonists & inhibitors , Picrates/metabolism , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Serotonin 5-HT4 Receptor Agonists/chemical synthesis , Serotonin 5-HT4 Receptor Agonists/chemistry , Structure-Activity Relationship
3.
Front Pharmacol ; 9: 587, 2018.
Article in English | MEDLINE | ID: mdl-29930510

ABSTRACT

Previous data showed that neuropathic pain induced by mechanical lesion of peripheral nerves has specific characteristics and responds differently to alleviating drugs at cephalic versus extracephalic level. This is especially true for tricyclic antidepressants currently used for alleviating neuropathic pain in humans which are less effective against cephalic neuropathic pain. Whether this also applies to the antidepressant agomelatine, with its unique pharmacological properties as MT1/MT2 melatonin receptor agonist and 5-HT2B/5-HT2C serotonin receptor antagonist, has been investigated in two rat models of neuropathic pain. Acute treatments were performed 2 weeks after unilateral chronic constriction (ligation) injury to the sciatic nerve (CCI-SN) or the infraorbital nerve (CCI-ION), when maximal mechanical allodynia had developed in ipsilateral hindpaw or vibrissal pad, respectively, in Sprague-Dawley male rats. Although agomelatine (45 mg/kg i.p.) alone was inactive, co-treatment with gabapentin, at an essentially ineffective dose (50 mg/kg i.p.) on its own, produced marked anti-allodynic effects, especially in CCI-ION rats. In both CCI-SN and CCI-ION models, suppression of mechanical allodynia by 'agomelatine + gabapentin' could be partially mimicked by the combination of 5-HT2C antagonist (SB 242084) + gabapentin, but not by melatonin or 5-HT2B antagonist (RS 127445, LY 266097), alone or combined with gabapentin. In contrast, pretreatment by idazoxan, propranolol or the ß2 antagonist ICI 118551 markedly inhibited the anti-allodynic effect of 'agomelatine + gabapentin' in both CCI-SN and CCI-ION rats, whereas pretreatment by the MT1/MT2 receptor antagonist S22153 was inactive. Altogether these data indicate that 'agomelatine + gabapentin' is a potent anti-allodynic combination at both cephalic and extra-cephalic levels, whose action implicates α2- and ß2-adrenoreceptor-mediated noradrenergic neurotransmission.

SELECTION OF CITATIONS
SEARCH DETAIL