Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 179(13): 4106-14, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9209022

ABSTRACT

The relationship between the acetylation of peptidoglycan and that of aminoglycosides in Providencia stuartii has been investigated both in vivo and in vitro. Adaptation of the assay for peptidoglycan N-->O-acetyltransferase permitted an investigation of the use of peptidoglycan as a source of acetate for the N acetylation of aminoglycosides by gentamicin N-acetyltransferase [EC 2.3.1.59; AAC(2')]. The peptidoglycan from cells of P. stuartii PR50 was prelabelled with 3H by growth in the presence of N-[acetyl-3H]glucosamine. Under these conditions, [3H]acetate was confirmed to be transferred to the C-6 position of peptidoglycan-bound N-acetylmuramyl residues. Isolated cells were subsequently incubated in the presence of various concentrations of gentamicin and tobramycin (0 to 5x MIC). Analysis of various cellular fractions from isolated cells and spent culture medium by the aminoglycoside-binding phosphocellulose paper assay revealed increasing levels of radioactivity associated with the filters used for whole-cell sonicates of cells treated with gentamicin up to 2 x MIC. Beyond this concentration, a decrease in radioactivity was observed, consistent with the onset of cell lysis. Similar results were obtained with tobramycin, but the increasing trend was less obvious. The transfer of radiolabel to either aminoglycoside was not observed with P. stuartii PR100, a strain that is devoid of AAC(2')-Ia. A high-performance anion-exchange chromatography-based method was established to further characterize the AAC(2')-Ia-catalyzed acetylation of aminoglycosides. The high-performance liquid chromatography (HPLC)-based method resolved a tobramycin preparation into two peaks, both of which were collected and confirmed by 1H nuclear magnetic resonance to be the antibiotic. Authentic standards of 2'-N-acetyltobramycin were prepared and were well separated from the parent antibiotic when subjected to the HPLC analysis. By applying this technique, the transfer of radiolabelled acetate from the cell wall polymer peptidoglycan to tobramycin was confirmed. In addition, isolated and purified AAC(2')-Ia was shown to catalyze in vitro the transfer of acetate from acetyl-coenzyme A, soluble fragments of peptidoglycan, and N-acetylglucosamine to tobramycin. These data further support the proposal that AAC(2')-Ia from P. stuartii may have a physiological role in its secondary metabolism and that its activity on aminoglycosides is simply fortuitous.


Subject(s)
Acetyltransferases/metabolism , Aminoglycosides/metabolism , Peptidoglycan/metabolism , Providencia/enzymology , Acetates/metabolism , Acetylation , Acetyltransferases/chemistry , Acetyltransferases/isolation & purification , Cellulose/analogs & derivatives , Cellulose/metabolism , Chromatography, Ion Exchange , Molecular Structure
2.
Microb Drug Resist ; 2(1): 135-40, 1996.
Article in English | MEDLINE | ID: mdl-9158736

ABSTRACT

The gentamicin 2'-N-acetyltransferase [EC 2.3.1.59; AAC(2')-Ia] of Providencia stuartii was shown to contribute to the O-acetylation of peptidoglycan and mutants that either under- or overexpress the aac(2')-Ia gene was characterized phenotypically to possess either lower or higher levels of peptidoglycan O-acetylation, respectively, compared to the wild-type. These mutants were subjected to scanning electron microscopy. P. stuartii PR100, with 42-44% peptidoglycan O-acetylation compared to 54% for the wild-type, appeared as irregular rods. In direct contrast, strains PR50.LM3 and PR51, with increased levels of peptidoglycan O-acetylation (63 and 65%, respectively), appeared as coccobacilli or chain formers, respectively. Zymogram analysis of the autolysins produced by another member of the closely related Proteeae group of bacteria, Proteus mirabilis, indicated the presence of three classes of enzymes: one that acts preferentially on native, O-acetylated peptidoglycan, a second that hydrolyses non-O-acetylated peptidoglycan, and a third that is not distinguished by the two forms of substrate. On the basis of the apparent morphological changes directly related to levels of O-acetylation combined with the presence of different classes of autolysins, a model is proposed that invokes the role of this modification in the control of autolysins for the maintenance of the structure of the peptidoglycan sacculus.


Subject(s)
Peptidoglycan/metabolism , Providencia/metabolism , Acetylation , Acetyltransferases/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriolysis , Electrophoresis, Polyacrylamide Gel , Gentamicins/pharmacology , Microscopy, Electron, Scanning , Mutation , Peptidoglycan/chemistry , Proteus mirabilis/drug effects , Providencia/genetics , Providencia/ultrastructure
3.
J Bacteriol ; 177(15): 4303-10, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7635816

ABSTRACT

A collection of Providencia stuartii mutants which either underexpress or overexpress aac(2')-Ia, the chromosomal gene coding for gentamicin 2'-N-acetyltransferase (EC 2.3.1.59), have been characterized phenotypically as possessing either lower or higher levels of peptidoglycan O acetylation, respectively, than the wild type. These mutants were subjected to both negative-staining and thin-section electron microscopy. P. stuartii PR100, with 42% O acetylation of peptidoglycan compared with 52% O acetylation in the wild type, appeared as irregular rods. In direct contrast, P. stuartii strains PR50.LM3 and PR51, with increased levels of peptidoglycan O acetylation (65 and 63%, respectively), appeared as coccobacilli and chain formers, respectively. Membrane blebbing was also observed with the chain-forming strain PR51. Thin sectioning of this mutant indicated that it was capable of proper constriction and separation. P. stuartii PM1, when grown to mid-exponential phase, did not have altered peptidoglycan O-acetylation levels, and cellular morphology remained similar to that of wild-type strains. However, continued growth into stationary phase resulted in a 15% increase in peptidoglycan O acetylation concomitant with a change of some cells from a rod-shaped to a coccobacillus-shaped morphology. The fact that these apparent morphological changes were directly related to levels of O acetylation support the view that this modification plays a role in the maintenance of peptidoglycan structure, presumably through the control of autolytic activity.


Subject(s)
Acetyltransferases/biosynthesis , Peptidoglycan/metabolism , Providencia/metabolism , Acetylation , Acetyltransferases/genetics , Chromatography, High Pressure Liquid , Gene Expression Regulation, Bacterial , Mutation , Oxygen/metabolism , Phenotype , Providencia/cytology , Providencia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...