Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(9): 15482-15494, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473267

ABSTRACT

Sapphire optical fiber has the ability to withstand ultrahigh temperatures and high radiation, but it is multimoded which prevents its use in many sensing applications. Problematically, Bragg gratings in such fiber exhibit multiple reflection peaks with a fluctuating power distribution. In this work, we write single-mode waveguides with Bragg gratings in sapphire using a novel multi-layer depressed cladding design in the 1550 nm telecommunications waveband. The Bragg gratings have a narrow bandwidth (<0.5 nm) and have survived annealing at 1000°C. The structures are inscribed with femtosecond laser direct writing, using adaptive beam shaping with a non-immersion objective. A single-mode sapphire fiber Bragg grating is created by writing a waveguide with a Bragg grating within a 425 µm diameter sapphire optical fiber, providing significant potential for accurate remote sensing in ultra-extreme environments.

2.
Opt Express ; 25(12): 13773-13781, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788919

ABSTRACT

We present a design of graded-index ring-core fiber (GI-RCF) supporting 3 linearly polarized (LP) mode-groups (i.e. LP01, LP11 and LP21) with a single radial index of one for mode-division multiplexed (MDM) transmission. Reconfigurable spatial light modulator (SLM) based spatial (mode) (de)multiplexers are used to systematically characterize spatial/temporal modal properties of the GI-RCF. We also demonstrate all-optical mode-group multiplexed transmissions over a 360m fabricated GI-RCF without using multiple-input multiple-output digital signal processing (MIMO DSP).

3.
Rev Sci Instrum ; 86(6): 063105, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26133826

ABSTRACT

The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

SELECTION OF CITATIONS
SEARCH DETAIL
...