Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
4.
IEEE Trans Biomed Eng ; PP2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38090865

ABSTRACT

OBJECTIVE: Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS: Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS: Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION: The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE: The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.

13.
ArXiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37502626

ABSTRACT

Objective: Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ 2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. Methods: Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. Results: Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. Conclusion: The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. Significance: The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.

14.
J Magn Reson ; 353: 107498, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295282

ABSTRACT

In contrast to linearly polarized RF coil arrays, quadrature transceiver coil arrays are capable of improving signal-to-noise ratio (SNR), spatial resolution, and parallel imaging performance. Owing to a reduced excitation power, a low specific absorption rate can also be obtained using quadrature RF coils. However, due to the complex nature of their structure and their electromagnetic properties, it is challenging to achieve sufficient electromagnetic decoupling while designing multichannel quadrature RF coil arrays, particularly in ultra-high fields. In this work, we proposed a double-cross magnetic wall decoupling for quadrature transceiver RF arrays and implemented the decoupling method on common-mode differential mode quadrature (CMDM) quadrature transceiver arrays at an ultrahigh field of 7 T. The proposed magnetic decoupling wall, comprised of two intrinsically decoupled loops, is used to reduce the mutual coupling between all the multi-mode currents present in the quadrature CMDM array. The decoupling network has no physical connection with the CMDMs' resonators, which provides less design constraint over size-adjustable RF arrays. To validate the feasibility of the proposed cross-magnetic decoupling wall, systematic studies on the decoupling performance based on the impedance of two intrinsic loops are numerically performed. A pair of quadrature transceiver CMDMs is constructed along with the proposed decoupling network, and their scattering matrix is characterized using a network analyzer. The measured results indicate that all the current modes from coupling are simultaneously suppressed using the proposed cross-magnetic wall. Moreover, field distribution and local specific absorption rate (SAR) are numerically obtained for a well-decoupled 8-channel quadrature knee-coil array.

16.
J Magn Reson ; 345: 107321, 2022 12.
Article in English | MEDLINE | ID: mdl-36335877

ABSTRACT

Electromagnetic decoupling among a close-fitting or high-density transceiver RF array elements is required to maintain the integrity of the magnetic flux density from individual channel for enhanced performance in detection sensitivity and parallel imaging. High-impedance RF coils have demonstrated to be a prominent design method to circumvent these coupling issues. Yet, inherent characteristics of these coils have ramification on the B1 field efficiency and SNR. In this work, we propose a hairpin high impedance RF resonator design for highly decoupled multichannel transceiver arrays at ultrahigh magnetic fields. Due to the high impedance property of the hairpin resonators, the proposed transceiver array can provide high decoupling performance without using any dedicated decoupling circuit among the resonant elements. Because of elimination of lumped inductors in the resonator circuit, higher B1 field efficiency in imaging subjects can be expected. In order to validate the feasibility of the proposed hairpin RF coils, systematical studies on decoupling performance, field distribution, and SNR are performed, and the results are compared with those obtained from existing high-impedance RF coil, e.g., "self-decoupled RF coil". To further investigate its performance, an 8-channel head coil array using the proposed hairpin resonators loaded with a cylindrical phantom is designed, demonstrating a 19 % increase of the B1+ field intensity compared to the self-decoupled coils at 7 T. Furthermore, the characteristics of the hairpin RF coils are evaluated using a more realistic human head voxel model numerically. The proposed hairpin RF coil provides excellent decoupling performance and superior RF magnetic field efficiency compared to the "self-decoupled" high impedance coils. Bench test of a pair of fabricated hairpin coils prove to be in good accordance with numerical results.


Subject(s)
Magnetic Resonance Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...