Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 61: 1-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23499837

ABSTRACT

Brain tumor patients often develop cognitive impairment months to years after partial or fractionated whole-brain irradiation (WBI). Studies suggest that neuroinflammation and decreased hippocampal neurogenesis contribute to the pathogenesis of radiation-induced brain injury. In this study, we determined if the peroxisomal proliferator-activated receptor (PPAR) δ agonist GW0742 can prevent radiation-induced brain injury in C57Bl/6 wild-type (WT) and PPARδ knockout (KO) mice. Dietary GW0742 prevented the acute increase in IL-1ß mRNA and ERK phosphorylation measured at 3h after a single 10-Gy dose of WBI; it also prevented the increase in the number of activated hippocampal microglia 1 week after WBI. In contrast, dietary GW074 failed to prevent the radiation-induced decrease in hippocampal neurogenesis determined 2 months after WBI in WT mice or to mitigate their hippocampal-dependent spatial memory impairment measured 3 months after WBI using the Barnes maze task. PPARδ KO mice exhibited defects including decreased numbers of astrocytes in the dentate gyrus/hilus of the hippocampus and a failure to exhibit a radiation-induced increase in activated hippocampal microglia. Interestingly, the number of astrocytes in the dentate gyrus/hilus was reduced in WT mice, but not in PPARδ KO mice 2 months after WBI. These results demonstrate that, although dietary GW0742 prevents the increase in inflammatory markers and hippocampal microglial activation in WT mice after WBI, it does not restore hippocampal neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after WBI. Thus, the exact relationship between radiation-induced neuroinflammation, neurogenesis, and cognitive impairment remains elusive.


Subject(s)
Cognition Disorders/prevention & control , Cranial Irradiation/adverse effects , Hippocampus/radiation effects , Neurogenesis/drug effects , PPAR delta/agonists , Thiazoles/pharmacology , Animals , Cognition Disorders/etiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippocampus/pathology , Hippocampus/physiology , Inflammation/prevention & control , Interleukin-1beta/genetics , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/radiation effects , Phosphorylation
2.
Physiol Genomics ; 43(13): 829-35, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21540301

ABSTRACT

In Fischer 344 (F344) rats, renin-angiotensin system (RAS) blockade for 1 yr with the angiotensin II type 1 (AT(1)) receptor blocker L-158,809 prevents age-related impairments in metabolic function, similar to transgenic rats with low glial angiotensinogen (Aogen). Brain RAS regulation may contribute to the benefits of long-term systemic AT(1) antagonism. We assessed the mRNA of RAS components in the dorsomedial medulla of F344 rats at 3 (young; n = 8) or 15 mo of age (old; n = 7) and in rats treated from 3 to 15 mo of age with 20 mg/l of the AT(1) receptor antagonist L-158,809 (Old+L; n = 6). Aogen and renin mRNA were lower in the young compared with old group. Angiotensin-converting enzyme (ACE) mRNA was lower in the old and Old+L compared with the young group. ACE2 and neprilysin expression were significantly higher in Old+L compared with young or old rats. AT(1b), AT(2), and Mas receptor mRNA were higher with treatment. Leptin receptor mRNA was lower in the old rats and this was prevented by L-158,809 treatment. Dual-specificity phosphatase 1 (DUSP1) mRNA was highest in the Old+L group. Aggregate correlate summation revealed a positive relationship for Mas receptor mRNA with food intake. The findings provide evidence for regulation of dorsomedial medullary renin and Aogen mRNA during aging. Long-term AT(1) receptor blockade increases the mRNA of the enzymes ACE2 and neprilysin and the MAS receptor, which could potentially shift the balance from ANG II to ANG-(1-7) and prevent age-related declines in the leptin receptor and its signaling pathway.


Subject(s)
Gene Expression Regulation , Mediodorsal Thalamic Nucleus/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/genetics , Aging/drug effects , Aging/genetics , Angiotensinogen/genetics , Angiotensinogen/metabolism , Animals , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Gene Expression Regulation/drug effects , Imidazoles/pharmacology , Leptin/genetics , Leptin/metabolism , Male , Mediodorsal Thalamic Nucleus/drug effects , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Regression Analysis , Renin-Angiotensin System/drug effects , Tetrazoles/pharmacology , Time Factors
3.
Radiat Res ; 173(1): 49-61, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20041759

ABSTRACT

Cognitive dysfunction develops in approximately 50% of patients who receive fractionated whole-brain irradiation and survive 6 months or more. The mechanisms underlying these deficits are unknown. A recent study demonstrated that treatment with the angiotensin II type 1 receptor antagonist (AT(1)RA) L-158,809 before, during and after fractionated whole-brain irradiation prevents or ameliorates radiation-induced cognitive deficits in adult rats. Given that (1) AT(1)RAs may function as anti-inflammatory drugs, (2) inflammation is thought to contribute to radiation injury, and (3) radiation-induced inflammation alters progenitor cell populations, we tested whether the cognitive benefits of L-158,809 treatment were associated with amelioration of the sustained neuroinflammation and changes in neurogenesis that are induced by fractionated whole-brain irradiation. In rats examined 28 and 54 weeks after irradiation, L-158,809 treatment did not alter the effects of radiation on the number and activation of microglia in the perirhinal cortex and hippocampus, nor did it prevent the radiation-induced decrease in proliferating cells and immature neurons in the hippocampus. These findings suggest that L-158,809 does not prevent or ameliorate radiation-induced cognitive deficits by modulation of chronic inflammatory mechanisms, but rather may reduce radiation-induced changes that occur earlier in the postirradiation period and that lead to cognitive dysfunction.


Subject(s)
Brain/radiation effects , Imidazoles/pharmacology , Microglia/drug effects , Microglia/radiation effects , Neurogenesis/drug effects , Neurogenesis/radiation effects , Receptor, Angiotensin, Type 1/metabolism , Tetrazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Brain/drug effects , Brain/pathology , Brain/physiopathology , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cognition Disorders/etiology , Cognition Disorders/metabolism , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Dentate Gyrus/drug effects , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Dentate Gyrus/radiation effects , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Male , Microglia/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurons/radiation effects , Radiation Dosage , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/physiopathology , Rats , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/radiation effects , Time Factors
4.
Radiat Res ; 168(5): 574-81, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17973545

ABSTRACT

To test the efficacy of magnetic resonance spectroscopy (MRS) in identifying radiation-induced brain injury, adult male Fischer 344 rats received fractionated whole-brain irradiation (40 or 45 Gy given in 5-Gy fractions twice a week for 4 or 4.5 weeks, respectively); control rats received sham irradiation. Twelve and 52 weeks after whole-brain irradiation, rats were subjected to high-resolution MRI and proton MRS. No apparent lesions or changes in T(1)- or T(2)-weighted images were noted at either time. This is in agreement with no gross changes being found in histological sections from rats 50 weeks postirradiation. Analysis of the MR spectra obtained 12 weeks after fractionated whole-brain irradiation also failed to show any significant differences (P > 0.1) in the concentration of brain metabolites between the whole-brain-irradiated and sham-irradiated rats. In contrast, analysis of the MR spectra obtained 52 weeks postirradiation revealed significant differences between the irradiated and sham-irradiated rats in the concentrations of several brain metabolites, including increases in the NAA/tCr (P < 0.005) and Glx/tCr (P < 0.001) ratios and a decrease in the mI/tCr ratio (P < 0.01). Although the cognitive function of these rats measured by the object recognition test was not significantly different (P > 0.1) between the irradiated and sham-irradiated rats at 14 weeks postirradiation, it was significantly different (P < 0.02) at 54 weeks postirradiation. These findings suggest that MRS may be a sensitive, noninvasive tool to detect changes in radiation-induced brain metabolites that may be associated with the radiation-induced cognitive impairments observed after prolonged fractionated whole-brain irradiation.


Subject(s)
Brain/metabolism , Brain/radiation effects , Cognition Disorders/metabolism , Cognition/radiation effects , Magnetic Resonance Spectroscopy/methods , Neurotransmitter Agents/analysis , Animals , Cognition Disorders/etiology , Dose-Response Relationship, Radiation , Male , Radiation Dosage , Rats , Rats, Inbred F344
5.
Am J Physiol Heart Circ Physiol ; 293(3): H1327-33, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17616746

ABSTRACT

Fischer-344 (F344) rats exhibit proteinuria and insulin resistance in the absence of hypertension as they age. We determined the effects of long-term (1 yr) treatment with the angiotensin (ANG) II type 1 (AT(1)) receptor blocker L-158,809 on plasma and urinary ANG peptide levels, systolic blood pressure (SBP), and indexes of glucose metabolism in 15-mo-old male F344 rats. Young rats at 3 mo of age (n = 8) were compared with two separate groups of older rats: one control group (n = 7) and one group treated with L-158,809 (n = 6) orally (20 mg/l) for 1 yr. SBP was not different between control and treated rats but was higher in young rats. Serum leptin, insulin, and glucose levels were comparable between treated and young rats, whereas controls had higher glucose and leptin with a similar trend for insulin. Plasma ANG I and ANG II were higher in treated than untreated young or older rats, as evidence of effective AT(1) receptor blockade. Urinary ANG II and ANG-(1-7) were higher in controls compared with young animals, and treated rats failed to show age-related increases. Protein excretion was markedly lower in treated and young rats compared with control rats (young: 8 +/- 2 mg/day vs. control: 129 +/- 51 mg/day vs. treated: 9 +/- 3 mg/day, P < 0.05). Long-term AT(1) receptor blockade improves metabolic parameters and provides renoprotection. Differential regulation of systemic and intrarenal (urinary) ANG systems occurs during blockade, and suppression of the intrarenal system may contribute to reduced proteinuria. Thus, insulin resistance, renal injury, and activation of the intrarenal ANG system during early aging in normotensive animals can be averted by renin-ANG system blockade.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Imidazoles/pharmacology , Kidney/drug effects , Metabolism/drug effects , Receptor, Angiotensin, Type 1/drug effects , Tetrazoles/pharmacology , Aging/metabolism , Angiotensin I/blood , Angiotensin II/blood , Animals , Blood Glucose/metabolism , Blood Pressure/drug effects , Blood Pressure/physiology , Insulin/blood , Kidney/physiology , Leptin/blood , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Metabolism/physiology , Rats , Rats, Inbred F344 , Receptor, Angiotensin, Type 1/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...