Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 55: 172-182, 2017 06.
Article in English | MEDLINE | ID: mdl-28359858

ABSTRACT

Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab')2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab')2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab')2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. STATEMENT OF SIGNIFICANCE: Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct characterization of surface immobilized and oriented antibodies, are under-utilized in current practice. Selection of a small number of mass fragments for analysis, typically pertaining to amino acids, is commonplace in literature, leaving the majority of the information-rich spectra unanalyzed. The novelty of this work is the utilization of a comprehensive, unbiased mass fragment list and the employment of principal component analysis (PCA) and artificial neural network (ANN) models in a unique methodology to prove antibody orientation. This methodology is of significant and broad interest to the scientific community as it is applicable to a range of substrates and allows for direct, label-free characterization of surface bound proteins.


Subject(s)
Antibodies, Immobilized/chemistry , Ethylene Glycols/chemistry , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Animals , Chromium/chemistry , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Langmuir ; 32(34): 8717-28, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27494212

ABSTRACT

Artificial neural networks (ANNs) form a class of powerful multivariate analysis techniques, yet their routine use in the surface analysis community is limited. Principal component analysis (PCA) is more commonly employed to reduce the dimensionality of large data sets and highlight key characteristics. Herein, we discuss the strengths and weaknesses of PCA and ANNs as methods for investigation and interpretation of a complex multivariate sample set. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS) we acquired spectra from an antibody and its proteolysis fragments with three primary-ion sources to obtain a panel of 72 spectra and a characteristic peak list of 775 fragment ions. We describe the use of ANNs as a means to interpret the ToF-SIMS spectral data, highlight the optimal neural network design and computational parameters, and discuss the technique limitations. Further, employing Bi3(+) as the primary-ion source, ANNs can accurately classify antibody fragments from the parent antibody based on ToF-SIMS spectra.


Subject(s)
Antibodies/chemistry , Neural Networks, Computer , Spectrometry, Mass, Secondary Ion/statistics & numerical data , Adsorption , Amino Acids/analysis , Animals , ErbB Receptors/immunology , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Multivariate Analysis , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...