Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Genomics ; 116(4): 110868, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38795738

ABSTRACT

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.

2.
Sci Rep ; 14(1): 11848, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38782931

ABSTRACT

Despite extensive characterisation of uropathogenic Escherichia coli (UPEC) causing urinary tract infections (UTIs), the genetic background of non-urinary extraintestinal pathogenic E. coli (ExPEC) in companion animals remains inadequately understood. In this study, we characterised virulence traits of 104 E. coli isolated from canine pyometra (n = 61) and prostatic abscesses (PAs) (n = 38), and bloodstream infections (BSIs) in dogs (n = 2), and cats (n = 3). A stronger association with UPEC of pyometra strains in comparison to PA strains was revealed. Notably, 44 isolates exhibited resistance to third-generation cephalosporins and/or fluoroquinolones, 15 were extended-spectrum ß-lactamase-producers. Twelve multidrug-resistant (MDR) strains, isolated from pyometra (n = 4), PAs (n = 5), and BSIs (n = 3), along with 7 previously characterised UPEC strains from dogs and cats, were sequenced. Genomic characteristics revealed that MDR E. coli associated with UTIs, pyometra, and BSIs belonged to international high-risk E. coli clones, including sequence type (ST) 38, ST131, ST617, ST648, and ST1193. However, PA strains belonged to distinct lineages, including ST12, ST44, ST457, ST744, and ST13037. The coreSNPs, cgMLST, and pan-genome illustrated intra-clonal variations within the same ST from different sources. The high-risk ST131 and ST1193 (phylogroup B2) contained high numbers of ExPEC virulence genes on pathogenicity islands, predominating in pyometra and UTI. Hybrid MDR/virulence IncF multi-replicon plasmids, containing aerobactin genes, were commonly found in non-B2 phylogroups from all sources. These findings offer genomic insights into non-urinary ExPEC, highlighting its potential for invasive infections in pets beyond UTIs, particularly with regards to high-risk global clones.


Subject(s)
Abscess , Dog Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Pyometra , Urinary Tract Infections , Dogs , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Male , Dog Diseases/microbiology , Cats , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Pyometra/microbiology , Pyometra/veterinary , Pyometra/genetics , Abscess/microbiology , Abscess/veterinary , Female , Cat Diseases/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Prostatic Diseases/microbiology , Prostatic Diseases/veterinary , Prostatic Diseases/genetics , Virulence/genetics , Virulence Factors/genetics
3.
PLoS One ; 19(5): e0302584, 2024.
Article in English | MEDLINE | ID: mdl-38709757

ABSTRACT

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Subject(s)
Catfishes , DNA, Mitochondrial , Genetic Variation , Inbreeding , Microsatellite Repeats , Animals , Catfishes/genetics , Thailand , Microsatellite Repeats/genetics , DNA, Mitochondrial/genetics , Genotype , Aquaculture , North African People
4.
Biomed Rep ; 21(1): 102, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38800037

ABSTRACT

End-stage kidney disease (ESKD) is the final stage of chronic kidney disease (CKD), in which long-term damage has been caused to the kidneys to the extent that they are no longer able to filter the blood of waste and extra fluid. Peritoneal dialysis (PD) is one of the treatments that remove waste products from the blood through the peritoneum which can improve the quality of life for patients with ESKD. However, PD-associated peritonitis is an important complication that contributes to the mortality of patients, and the detection of bacterial pathogens is associated with a high culture-negative rate. The present study aimed to apply a metagenomic approach for the bacterial identification in the PD effluent (PDE) of patients with CKD based on 16S ribosomal DNA sequencing. As a result of this investigation, five major bacteria species, namely Escherichia coli, Phyllobacterium myrsinacearum, Streptococcus gallolyticus, Staphylococcus epidermidis and Shewanella algae, were observed in PDE samples. Taken together, the findings of the present study have suggested that this metagenomic approach could provide a greater potential for bacterial taxonomic identification compared with traditional culture methods, suggesting that this is a practical and culture-independent alternative approach that will offer a novel preventative infectious strategy in patients with CDK.

5.
Viruses ; 16(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38675971

ABSTRACT

The majority of cases of undifferentiated acute febrile illness (AFI) in the tropics have an undefined etiology. In Thailand, AFI accounts for two-thirds of illnesses reported to the Ministry of Public Health. To characterize the bacterial and viral causes of these AFIs, we conducted molecular pathogen screening and serological analyses in patients who sought treatment in Chum Phae Hospital, Khon Kaen province, during the period from 2015 to 2016. Through integrated approaches, we successfully identified the etiology in 25.5% of cases, with dengue virus infection being the most common cause, noted in 17% of the study population, followed by scrub typhus in 3.8% and rickettsioses in 6.8%. Further investigations targeting viruses in patients revealed the presence of Guadeloupe mosquito virus (GMV) in four patients without other pathogen co-infections. The characterization of four complete genome sequences of GMV amplified from AFI patients showed a 93-97% nucleotide sequence identity with GMV previously reported in mosquitoes. Nucleotide substitutions resulted in amino acid differences between GMV amplified from AFI patients and mosquitoes, observed in 37 positions. However, these changes had undergone purifying selection pressure and potentially had a minimal impact on protein function. Our study suggests that the GMV strains identified in the AFI patients are relatively similar to those previously reported in mosquitoes, highlighting their potential role associated with febrile illness.


Subject(s)
Dengue , Fever , Humans , Thailand/epidemiology , Female , Male , Middle Aged , Adult , Dengue/virology , Dengue/epidemiology , Fever/virology , Young Adult , Adolescent , Phylogeny , Aged , Child , Scrub Typhus/microbiology , Scrub Typhus/epidemiology , Scrub Typhus/virology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Child, Preschool , Coinfection/virology , Coinfection/microbiology , Coinfection/epidemiology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Culicidae/virology , Culicidae/microbiology , Animals , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/virology
6.
BMC Complement Med Ther ; 24(1): 130, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521934

ABSTRACT

BACKGROUND: In a pilot study using both cannabidiol (CBD) and tetrahydrocannabinol (THC) as single agents in advanced cancer patients undergoing palliative care in Thailand, the doses were generally well tolerated, and the outcome measure of total symptom distress scores showed overall symptom benefit. The current study aims to determine the intensity of the symptoms experienced by breast cancer patients, to explore the microbiome profile, cytokines, and bacterial metabolites before and after the treatment with cannabis oil or no cannabis oil, and to study the pharmacokinetics parameters and pharmacogenetics profile of the doses. METHODS: A randomized, double-blinded, placebo-controlled trial will be conducted on the breast cancer cases who were diagnosed with breast cancer and currently receiving chemotherapy at King Chulalongkorn Memorial Hospital (KCMH), Bangkok, Thailand. Block randomization will be used to allocate the patients into three groups: Ganja Oil (THC 2 mg/ml; THC 0.08 mg/drop, and CBD 0.02 mg/drop), Metta Osot (THC 81 mg/ml; THC 3 mg/drop), and placebo oil. The Edmonton Symptom Assessment System (ESAS), Food Frequency Questionnaires (FFQ), microbiome profile, cytokines, and bacterial metabolites will be assessed before and after the interventions, along with pharmacokinetic and pharmacogenetic profile of the treatment during the intervention. TRIAL REGISTRATION: TCTR20220809001.


Subject(s)
Breast Neoplasms , Cannabidiol , Cannabis , Humans , Female , Breast Neoplasms/drug therapy , Pilot Projects , Thailand , Cannabidiol/adverse effects , Cytokines , Randomized Controlled Trials as Topic
7.
Food Funct ; 15(7): 3640-3652, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38482709

ABSTRACT

This study aimed to investigate the effects of gac fruit juice and its probiotic fermentation (FGJ) utilizing Lactobacillus paracasei on the modulation of the gut microbiota and the production of short-chain fatty acids (SCFAs). We conducted a comparison between FGJ, non-fermented gac juice (GJ), and control samples through in vitro digestion and colonic fermentation using the human gut microbiota derived from fecal inoculum. Our findings revealed that both GJ and FGJ led to an increase in the viability of Lactobacilli, with FGJ exhibiting even higher levels compared to the control. The results from the 16S rDNA amplicon sequencing technique showed that both GJ and FGJ exerted positive impact on the gut microbiota by promoting beneficial bacteria, notably Lactobacillus mucosae and Bacteroides vulgatus. Additionally, both GJ and FGJ significantly elevated the levels of SCFAs, particularly acetic, propionic, and n-butyric acids, as well as lactic acid, in comparison to the control. Notably, FGJ exhibited a more pronounced effect on the gut microbiota compared to GJ. This was evident in its ability to enhance species richness, reduce the Firmicutes to Bacteroidetes (F/B) ratio, promote Akkermansia, and inhibit pathogenic Escherichia coli. Moreover, FGJ displayed enhanced production of SCFAs, especially acetic and lactic acids, in contrast to GJ. Our findings suggest that the probiotic fermentation of gac fruit enhances its functional attributes in promoting a balanced gut microbiota. This beverage demonstrates potential as a functional food with potential advantages for sustaining intestinal health.


Subject(s)
Gastrointestinal Microbiome , Humans , Fruit and Vegetable Juices , Fermentation , Fatty Acids, Volatile/pharmacology , Fruit
8.
Microbiol Spectr ; 12(3): e0358923, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38319115

ABSTRACT

Whole-genome sequence analysis of six Enterobacter hormaechei and two Serratia nevei strains, using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing, revealed the presence of the epidemic blaOXA-181-carrying IncX3 plasmids co-harboring qnrS1 and ∆ere(A) genes, as well as multiple multidrug resistance (MDR) plasmids disseminating in all strains, originated from dogs and cats in Thailand. The subspecies and sequence types (ST) of the E. hormaechei strains recovered from canine and feline opportunistic infections included E. hormaechei subsp. xiangfangensis ST171 (n = 3), ST121 (n = 1), and ST182 (n = 1), as well as E. hormaechei subsp. steigerwaltii ST65 (n = 1). Five of the six E. hormaechei strains harbored an identical 51,479-bp blaOXA-181-carrying IncX3 plasmid. However, the blaOXA-181 plasmid (pCUVET22-969.1) of the E. hormaechei strain CUVET22-969 presented a variation due to the insertion of ISKpn74 and ISSbo1 into the virB region. Additionally, the blaOXA-181 plasmids of S. nevei strains were nearly identical to the others at the nucleotide level, with ISEcl1 inserted upstream of the qnrS1 gene. The E. hormaechei and S. nevei lineages from canine and feline origins might acquire the epidemic blaOXA-181-carrying IncX3 and MDR plasmids, which are shared among Enterobacterales, contributing to the development of resistance. These findings suggest the spillover of significant OXA-181-encoding plasmids to these bacteria, causing severe opportunistic infections in dogs and cats in Thailand. Surveillance and effective hygienic practice, especially in hospitalized animals and veterinary hospitals, should be urgently implemented to prevent the spread of these plasmids in healthcare settings and communities. IMPORTANCE: blaOXA-181 is a significant carbapenemase-encoding gene, usually associated with an epidemic IncX3 plasmid found in Enterobacterales worldwide. In this article, we revealed six carbapenemase-producing (CP) Enterobacter hormaechei and two CP Serratia nevei strains harboring blaOXA-181-carrying IncX3 and multidrug resistance plasmids recovered from dogs and cats in Thailand. The carriage of these plasmids can promote extensively drug-resistant properties, limiting antimicrobial treatment options in veterinary medicine. Since E. hormaechei and S. nevei harboring blaOXA-181-carrying IncX3 plasmids have not been previously reported in dogs and cats, our findings provide the first evidence of dissemination of the epidemic plasmids in these bacterial species isolated from animal origins. Pets in communities can serve as reservoirs of significant antimicrobial resistance determinants. This situation places a burden on antimicrobial treatment in small animal practice and poses a public health threat.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Cat Diseases , Dog Diseases , Enterobacter , Cats , Animals , Dogs , Serratia/genetics , Anti-Bacterial Agents , Dog Diseases/microbiology , Plasmids/genetics , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Microbial Sensitivity Tests
9.
Microbiol Spectr ; 12(3): e0346223, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38323824

ABSTRACT

Isoniazid-resistant tuberculosis (Hr-TB) is an important drug-resistant tuberculosis (TB). In addition to rifampicin, resistance to other medications for Hr-TB can impact the course of treatment; however, there are currently limited data in the literature. In this study, the drug susceptibility profiles of Hr-TB treatment and resistance-conferring mutations were investigated for Hr-TB clinical isolates from Thailand. Phenotypic drug susceptibility testing (pDST) and genotypic drug susceptibility testing (gDST) were retrospectively and prospectively investigated using the Mycobacterium Growth Indicator Tube (MGIT), the broth microdilution (BMD) method, and whole-genome sequencing (WGS)-based gDST. The prevalence of Hr-TB cases was 11.2% among patients with TB. Most Hr-TB cases (89.5%) were newly diagnosed patients with TB. In the pDST analysis, approximately 55.6% (60/108) of the tested Hr-TB clinical isolates exhibited high-level isoniazid resistance. In addition, the Hr-TB clinical isolates presented co-resistance to ethambutol (3/161, 1.9%), levofloxacin (2/96, 2.1%), and pyrazinamide (24/118, 20.3%). In 56 Hr-TB clinical isolates, WGS-based gDST predicted resistance to isoniazid [katG S315T (48.2%) and fabG1 c-15t (26.8%)], rifampicin [rpoB L430P and rpoB L452P (5.4%)], and fluoroquinolones [gyrA D94G (1.8%)], but no mutation for ethambutol was detected. The categorical agreement for the detection of resistance to isoniazid, rifampicin, ethambutol, and levofloxacin between WGS-based gDST and the MGIT or the BMD method ranged from 80.4% to 98.2% or 82.1% to 100%, respectively. pDST and gDST demonstrated a low co-resistance rate between isoniazid and second-line TB drugs in Hr-TB clinical isolates. IMPORTANCE: The prevalence of isoniazid-resistant tuberculosis (Hr-TB) is the highest among other types of drug-resistant tuberculosis. Currently, the World Health Organization (WHO) guidelines recommend the treatment of Hr-TB with rifampicin, ethambutol, pyrazinamide, and levofloxacin for 6 months. The susceptibility profiles of Hr-TB clinical isolates, especially when they are co-resistant to second-line drugs, are critical in the selection of the appropriate treatment regimen to prevent treatment failure. This study highlights the susceptibility profiles of the WHO-recommended treatment regimen in Hr-TB clinical isolates from a tertiary care hospital in Thailand and the concordance and importance of using the phenotypic drug susceptibility testing or genotypic drug susceptibility testing for accurate and comprehensive interpretation of results.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Pyrazinamide/therapeutic use , Ethambutol , Rifampin/pharmacology , Rifampin/therapeutic use , Levofloxacin/therapeutic use , Thailand/epidemiology , Microbial Sensitivity Tests , Retrospective Studies , Tertiary Care Centers , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mutation
10.
Sci Rep ; 14(1): 3404, 2024 02 10.
Article in English | MEDLINE | ID: mdl-38337025

ABSTRACT

Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Nanopores , Tuberculosis , Animals , Tuberculosis/microbiology , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Macaca fascicularis/genetics , RNA, Ribosomal, 16S/genetics
11.
Sci Rep ; 14(1): 2347, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38281987

ABSTRACT

Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.


Subject(s)
MicroRNAs , Schistosoma japonicum , Animals , Male , Female , Schistosoma japonicum/genetics , MicroRNAs/genetics , Life Cycle Stages/genetics , RNA, Helminth/genetics
12.
Am J Primatol ; 86(2): e23580, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012960

ABSTRACT

Stone tool use is a rare behavior across nonhuman primates. Here we report the first population of common long-tailed macaques (Macaca fascicularis fascicularis) who customarily used stone tools to open rock oysters (Saccostrea forskali) on a small island along the Thai Gulf in Koh Ped (KPE), eastern Thailand. We observed this population several times during the past 10 years, but no stone-tool use behavior was observed until our survey during the coronavirus disease 2019 (COVID-19) pandemic in July 2022. KPE is located in Pattaya City, a hotspot for tourism in Thailand. Tourists in this area frequently provided large amounts of food for the monkeys on KPE. During the COVID-19 curfew, however, tourists were not allowed to access the island, and monkeys began to face food scarcity. During this time, we observed stone-tool use behavior for the first time on KPE. Based on our observations, the first tool manipulation was similar to stone throwing (a known precursor of stone tool use). From our observations in March 2023, we found 17 subadult/adult animals performing the behavior, 15 of 17 were males and mostly solitary while performing the behavior. The M. f. fascicularis subspecies was confirmed by distribution, morphological characteristics, and mtDNA and SRY gene sequences. Taken together, we proposed that the stone tool use behavior in the KPE common long-tailed macaques emerged due to the COVID-19 food scarcity. Since traveling is no longer restricted many tourists have started coming back to the island, and there is a high risk for this stone tool-use behavior to disappear within this population of long-tailed macaques.


Subject(s)
COVID-19 , Tool Use Behavior , Male , Animals , Female , Macaca fascicularis , Thailand/epidemiology , COVID-19/epidemiology , Food
13.
Cancer Res Treat ; 56(2): 455-463, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37986562

ABSTRACT

PURPOSE: The epidermal growth factor receptor (EGFR) mutation is a widely prevalent oncogene driver in non-small cell lung cancer (NSCLC) in East Asia. The detection of EGFR mutations is a standard biomarker test performed routinely in patients with NSCLC for the selection of targeted therapy. Here, our objective was to develop a portable new technique for detecting EGFR (19Del, T790M, and L858R) mutations based on Nanopore sequencing. MATERIALS AND METHODS: The assay employed a blocker displacement amplification (BDA)-based polymerase chain reaction (PCR) technique combined with Nanopore sequencing to detect EGFR mutations. Mutant and wild-type EGFR clones were generated from DNA from H1650 (19Del heterozygous) and H1975 (T790M and L858R heterozygous) lung cancer cell lines. Then, they were mixed to assess the performance of this technique for detecting low variant allele frequencies (VAFs). Subsequently, formalin-fixed, paraffin-embedded (FFPE) tissue and cell-free DNA (cfDNA) from patients with NSCLC were used for clinical validation. RESULTS: The assay can detect low VAF at 0.5% mutant mixed in wild-type EGFR. Using FFPE DNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and Cobas real-time PCR were 98.46%, 100%, and 100%, respectively. For cfDNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and droplet digital PCR were 94.74%, 100%, and 100%, respectively. CONCLUSION: The BDA amplicon Nanopore sequencing is a highly accurate and sensitive method for the detection of EGFR mutations in clinical specimens.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Nanopore Sequencing , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , ErbB Receptors/genetics , Protein Kinase Inhibitors/therapeutic use , Mutation , DNA, Neoplasm , Cell-Free Nucleic Acids/therapeutic use , Real-Time Polymerase Chain Reaction
14.
ACS Omega ; 8(47): 44733-44744, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046356

ABSTRACT

Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzymopathy. Identification of the G6PD deficiency through screening is crucial to preventing adverse effects associated with hemolytic anemia following antimalarial drug exposure. Therefore, a rapid and precise field-based G6PD deficiency diagnosis is required, particularly in rural regions where malaria is prevalent. The phenotypic diagnosis of the G6PD intermediate has also been a challenging issue due to the overlapping of G6PD activity levels between deficient and normal individuals, leading to a misinterpretation. The availability of an accurate point-of-care testing (POCT) for G6PD genotype diagnosis will therefore increase the opportunity for screening heterozygous cases in a low-resource setting. In this study, an allele-specific recombinase polymerase amplification (AS RPA) with clustered regularly interspaced short palindromic repeats-Cas12a (CRISPR-Cas12a) was developed as a POCT for accurate diagnosis of common G6PD mutations in Thailand. The AS primers for the wild type and mutant alleles of G6PD MahidolG487A and G6PD ViangchanG871A were designed and used in RPA reactions. Following application of CRISPR-Cas12a systems containing specific protospacer adjacent motif, the targeted RPA amplicons were visualized with the naked eye. Results demonstrated that the G6PD MahidolG487A and G6PD ViangchanG871A assays reached 93.62 and 98.15% sensitivity, respectively. The specificity was 88.71% in MahidolG487A and 99.02% in G6PD ViangchanG871A. The diagnosis accuracy of the G6PD MahidolG487A and G6PD ViangchanG871A assays was 91.67 and 98.72%, respectively. From DNA extraction to detection, the assay required approximately 52 min. In conclusion, this study demonstrated the high performance of an AS RPA with the CRISPR-Cas12a platform for G6PD MahidolG487A and G6PD ViangchanG871A detection assays and the potential use of G6PD genotyping as POCT.

15.
Braz J Microbiol ; 54(4): 3283-3290, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889464

ABSTRACT

Bacteria are regarded as predisposing and perpetuating factors causing otitis externa (OE), whereas auricular anatomy is a predisposing factor. This study aims to investigate bacterial populations in the external auditory canals of healthy dogs and dogs with OE. Four categories of ear swabs included healthy erect-ear dogs, erect-ear dogs with OE, healthy pendulous-ear dogs and pendulous-ear dogs with OE. After bacterial DNA extraction, 16S rDNAs were amplified using specific primers within a V3/V4 region. Following DNA library construction, high-throughput sequencing was performed on MiSeq (Illumina). CLC Microbial Genomics Module was used to determine the rarefaction curve, bacterial classification, relative abundance, richness and diversity index. The results demonstrated that healthy dogs had higher bacterial richness and diversity than the dogs with OE. Comparable with culture-dependent methods described previously, this study revealed predominant Corynebacterium spp., Pseudomonas spp., Staphylococcus spp., and Proteus spp. in OE cases. Furthermore, high-throughput sequencing might disclose some potential emerging pathogens including Tissierella spp., Acinetobacter spp., and Achromobacter spp., which have not been reported in previous canine OE cases. Nevertheless, larger sample sizes are further required for an extensive evidence-based investigation.


Subject(s)
Dog Diseases , Otitis Externa , Dogs , Animals , Otitis Externa/veterinary , Otitis Externa/microbiology , DNA, Ribosomal/genetics , Bacteria/genetics , Staphylococcus , Pseudomonas/genetics , Dog Diseases/microbiology
16.
Genomics Inform ; 21(3): e39, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37813635

ABSTRACT

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

17.
Sci Rep ; 13(1): 14950, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696929

ABSTRACT

The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.


Subject(s)
Diet , Ecosystem , Gastrointestinal Microbiome , Macaca fascicularis , Animals , Gastrointestinal Microbiome/genetics , Macaca fascicularis/genetics , Macaca fascicularis/microbiology , RNA, Ribosomal, 16S/genetics , Species Specificity
18.
Exp Biol Med (Maywood) ; 248(20): 1841-1849, 2023 10.
Article in English | MEDLINE | ID: mdl-37702217

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a worldwide pandemic infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). World Health Organization (WHO) has defined the viral variants of concern (VOC) which cause more severe disease, higher transmissibility, and reduced vaccine efficacy. In this study, the "Nano COVID-19" workflow based on Oxford nanopore sequencing of the full-length spike gene combined with flexible data analysis options was developed to identify SARS-CoV-2 VOCs. The primers were designed to cover the full-length spike gene and can amplify all VOC strains. The results of VOC identification based on phylogenetic analysis of the full-length spike gene were comparable to the whole genome sequencing (WGS). Compared to the standard VOC identification pipeline, the fast analysis based on Read Assignment, Mapping, and Phylogenetic Analysis in Real Time (RAMPART) and the user-friendly method based on EPI2ME yielded 89.3% and 97.3% accuracy, respectively. The EPI2ME pipeline is recommended for researchers without bioinformatic skills, whereas RAMPART is more suitable for bioinformaticians. This workflow provides a cost-effective, simplified pipeline with a rapid turnaround time. Furthermore, it is portable to point-of-care SARS-CoV-2 VOC identification and compatible with large-scale analysis. Therefore, "Nano COVID-19" is an alternative viral epidemic screening and transmission tracking workflow.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Phylogeny , Mutation
19.
Ann Clin Microbiol Antimicrob ; 22(1): 87, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735687

ABSTRACT

OBJECTIVES: This study investigated the differences in epidemiological and clinical data, and antimicrobial susceptibilities among different subspecies of Mycobacterium abscessus complex (MABSC) clinical isolates at a medical school in Thailand. METHODS: A total of 143 MABSC clinical isolates recovered from 74 patients were genotypically analyzed for erm(41), rrl, and rrs mutations, and antimicrobial susceptibilities were determined using a broth microdilution method. Patient characteristics and clinical outcomes were reviewed from the medical records. RESULTS: Seventy-four patients were infected with 28/74 (37.8%) M. abscessus subspecies abscessus (MAB), 43/74 (58.1%) M. abscessus subsp. massiliense (MMA), and 3/74 (4.1%) M. abscessus subsp. bolletii (MBO). The clinical findings and outcomes were generally indistinguishable between the three subspecies. All three subspecies of MABSC clinical isolates exhibited high resistance rates to ciprofloxacin, doxycycline, moxifloxacin, TMP/SMX, and tobramycin. MAB had the highest resistance rates to clarithromycin (27.8%, 20/72) and amikacin (6.9%, 5/72) compared to MBO and MMA, with p < 0.001 and p = 0.004, respectively. In addition, the rough morphotype was significantly associated with resistance to amikacin (8.9%, 5/56), clarithromycin (26.8%, 15/56), and imipenem (76.8%, 43/56) (p < 0.001), whereas the smooth morphotype was resistant to linezolid (57.1%, 48/84) (p = 0.002). In addition, T28 of erm(41), rrl (A2058C/G and A2059C/G), and rrs (A1408G) mutations were detected in 87.4% (125/143), 16.1% (23/143), and 9.1% (13/143) of MABSC isolates, respectively. CONCLUSIONS: Three MABSC subspecies caused a variety of infections in patients with different underlying comorbidities. The drug susceptibility patterns of the recent circulating MABSC strains in Thailand were different among the three MABSC subspecies and two morphotypes.


Subject(s)
Anti-Infective Agents , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Clarithromycin , Schools, Medical , Thailand/epidemiology , Mycobacterium abscessus/genetics , Amikacin/pharmacology , Mycobacterium Infections, Nontuberculous/epidemiology
20.
Biomed Rep ; 19(4): 70, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37719681

ABSTRACT

Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...