Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Neuroscience ; 340: 521-529, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27856342

ABSTRACT

A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT1 receptors (AT1-R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT1-R in these events using a two-injection protocol and to further characterize the proposed AT1-R antagonism protocol. Central effect of orally administered AT1-R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT1-R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT1-R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT1-R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT1-R blockade. Our results extend AT1-R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output.


Subject(s)
Amphetamine/pharmacology , Blood Pressure/drug effects , Neurons/drug effects , Receptor, Angiotensin, Type 1/metabolism , Sympathomimetics/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Blood Pressure/physiology , Central Amygdaloid Nucleus/cytology , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/metabolism , Locus Coeruleus/cytology , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Male , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Neurons/cytology , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Random Allocation , Rats, Wistar , Solitary Nucleus/cytology , Solitary Nucleus/drug effects , Solitary Nucleus/metabolism
2.
Neuroscience ; 307: 1-13, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26299338

ABSTRACT

UNLABELLED: Previous results from our laboratory showed that angiotensin II AT1 receptors (AT1-R) are involved in the neuroadaptative changes induced by amphetamine. The aim of the present work was to study functional and neurochemical responses to angiotensin II (ANG II) mediated by AT1-R activation in animals previously exposed to amphetamine. For this purpose male Wistar rats (250-320 g) were treated with amphetamine (2.5mg/kg/day intraperitoneal) or saline for 5 days and implanted with intracerebroventricular (i.c.v.) cannulae. Seven days after the last amphetamine administration the animals received ANG II (400 pmol) i.c.v. One group was tested in a free choice paradigm for sodium (2% NaCl) and water intake and sacrificed for Fos immunoreactivity (Fos-IR) determinations. In a second group of rats, urine and plasma samples were collected for electrolytes and plasma renin activity determination and then they were sacrificed for Fos-IR determination in Oxytocinergic neurons (Fos-OT-IR). RESULTS: Repeated amphetamine exposure (a) prevented the increase in sodium intake and Fos-IR cells in caudate-putamen and accumbens nucleus induced by ANG II i.c.v. (b) potentiated urinary sodium excretion and Fos-OT-IR in hypothalamus and (c) increased the inhibitory response in plasma renin activity, in response to ANG II i.c.v. Our results indicate a possible functional desensitisation of AT1-R in response to ANG II, induced by repeated amphetamine exposure. This functional AT1-R desensitisation allows to unmask the effects of ANG II i.c.v. mediated by oxytocin. We conclude that the long lasting changes in brain AT1-R functionality should be considered among the psychostimulant-induced neuroadaptations.


Subject(s)
Amphetamine/pharmacology , Brain/drug effects , Brain/metabolism , Central Nervous System Stimulants/pharmacology , Receptors, Angiotensin/metabolism , Angiotensin II/pharmacology , Animals , Drinking/drug effects , Glucose/metabolism , Injections, Intraperitoneal , Injections, Intraventricular , Male , Oncogene Proteins v-fos/metabolism , Oxytocin/metabolism , Rats , Rats, Wistar , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...