Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8761, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253991

ABSTRACT

Cardiovascular disease (CVD) is a multisystemic and multicellular pathology that is generally associated with high levels of atherogenic lipoproteins in circulation. These lipoproteins tend to be retained and modified, for example, aggregated low-density lipoprotein (aggLDL), in the extracellular matrix of different tissues, such as the vascular wall and heart. The uptake of aggLDL generates a significant increase in cholesteryl ester (CE) in these tissues. We previously found that the accumulation of CE generates alterations in the insulin response in the heart. Although the insulin response is mainly associated with the uptake and metabolism of glucose, other studies have shown that insulin would fulfill functions in this tissue, such as regulating the calcium cycle and cardiac contractility. Here, we found that aggLDL induced-lipid accumulation altered the gene expression profile involved in processes essential for cardiac functionality, including insulin response and glucose uptake (Insr, Ins1, Pik3ip1, Slc2a4 gene expression), calcium cycle (Cacna1s and Gjc2 gene expression) and calcium-dependent cardiac contractility (Myh3), and cholesterol efflux (Abca1), in HL-1 cardiomyocytes. These observations were recapitulated using an in vivo model of hypercholesterolemic ApoE-KO mice. Altogether, these results may explain the deleterious effect of lipid accumulation in the myocardium, with important implications for lipid-overloaded associated CVD, including impaired insulin response, disrupted lipid metabolism, altered cardiac structure, and increased susceptibility to cardiovascular events.


Subject(s)
Cardiovascular Diseases , Insulin , Mice , Animals , Insulin/metabolism , Transcriptome , Calcium/metabolism , Cholesterol Esters/metabolism , Lipoproteins, LDL/metabolism , Lipid Metabolism/genetics , Membrane Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
2.
Res Sq ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37066247

ABSTRACT

Cardiovascular disease (CVD) is a multisystemic and multicellular pathology that is generally associated with high levels of atherogenic lipoproteins in circulation. These lipoproteins tend to be retained and modified, for example, aggregated low-density lipoprotein (aggLDL), in the extracellular matrix of different tissues, such as the vascular wall and heart. The uptake of aggLDL generates a significant increase in cholesteryl ester (CE) in these tissues. We previously found that the accumulation of CE generates alterations in the insulin response in the heart. Although the insulin response is mainly associated with the uptake and metabolism of glucose, other studies have shown that insulin would fulfill functions in this tissue, such as regulating the calcium cycle and cardiac contractility. Here, we found that aggLDL induced-lipid accumulation altered the gene expression profile involved in processes essential for cardiac functionality, including insulin response and glucose uptake ( Insr , Ins1 , Pik3ip1 , Slc2a4 gene expression), calcium cycle ( Cacna1s and Gjc2 gene expression) and calcium-dependent cardiac contractility ( Myh3 ), and cholesterol efflux ( Abca1 ), in HL-1 cardiomyocytes. These observations were recapitulated using an in vivo model of hypercholesterolemic ApoE-KO mice. Altogether, these results may explain the deleterious effect of lipid accumulation in the myocardium, with important implications for lipid-overloaded associated CVD.

3.
J Vis Exp ; (181)2022 03 12.
Article in English | MEDLINE | ID: mdl-35343957

ABSTRACT

Retinopathies are a heterogeneous group of diseases that affect the neurosensory tissue of the eye. They are characterized by neurodegeneration, gliosis and a progressive change in vascular function and structure. Although the onset of the retinopathies is characterized by subtle disturbances in visual perception, the modifications in the vascular plexus are the first signs detected by clinicians. The absence or presence of neovascularization determines whether the retinopathy is classified as either non-proliferative (NPDR) or proliferative (PDR). In this sense, several animal models tried to mimic specific vascular features of each stage to determine the underlying mechanisms involved in endothelium alterations, neuronal death and other events taking place in the retina. In this article, we will provide a complete description of the procedures required for the measurement of retinal vascular parameters in adults and early birth mice at postnatal day (P)17. We will detail the protocols to carry out retinal vascular staining with Isolectin GSA-IB4 in whole mounts for later microscopic visualization. Key steps for image processing with Image J Fiji software are also provided, therefore, the readers will be able to measure vessel density, diameter and tortuosity, vascular branching, as well as avascular and neovascular areas. These tools are highly helpful to evaluate and quantify vascular alterations in both non-proliferative and proliferative retinopathies.


Subject(s)
Eye Diseases , Retinal Diseases , Animals , Mice , Neovascularization, Pathologic , Retina , Retinal Vessels
4.
Front Cell Dev Biol ; 10: 855178, 2022.
Article in English | MEDLINE | ID: mdl-35300418

ABSTRACT

Hypoxia and hypoxia-reoxygenation are frequently developed through the course of many retinal diseases of different etiologies. Müller glial cells (MGCs), together with microglia and astrocytes, participate firstly in response to the injury and later in the repair of tissue damage. New pharmacological strategies tend to modulate MGCs ability to induce angiogenesis and gliosis in order to accelerate the recovery stage. In this article, we investigated the variation in autophagy flux under hypoxia during 4 h, employing both gas culture chamber (1% O2) and chemical (CoCl2) hypoxia, and also in hypoxia-reoxygenation. Then, we delineated a strategy to induce autophagy with Rapamycin and Resveratrol and analysed the gliotic and pro-angiogenic response of MGCs under hypoxic conditions. Our results showed an increase in LC3B II and p62 protein levels after both hypoxic exposure respect to normoxia. Moreover, 1 h of reoxygenation after gas hypoxia upregulated LC3B II levels respect to hypoxia although a decreased cell survival was observed. Exposure to low oxygen levels increased the protein expression of the glial fibrillary acid protein (GFAP) in MGCs, whereas Vimentin levels remained constant. In our experimental conditions, Rapamycin but not Resveratrol decreased GFAP protein levels in hypoxia. Finally, supernatants of MGCs incubated in hypoxic conditions and in presence of the autophagy inductors inhibited endothelial cells (ECs) tubulogenesis. In agreement with these results, reduced expression of vascular endothelial growth factor (VEGF) mRNA was observed in MGCs with Rapamycin, whereas pigment epithelium-derived factor (PEDF) mRNA levels significantly increased in MGCs incubated with Resveratrol. In conclusion, this research provides evidence about the variation of autophagy flux under hypoxia and hypoxia-reoxygenation as a protective mechanism activated in response to the injury. In addition, beneficial effects were observed with Rapamycin treatment as it decreased the gliotic response and prevented the development of newly formed blood vessels.

5.
Front Cell Dev Biol ; 8: 573987, 2020.
Article in English | MEDLINE | ID: mdl-33154969

ABSTRACT

Metabolic syndrome is a disorder characterized by a constellation of clinical findings such as elevated blood glucose, hyperinsulinemia, dyslipidemia, hypertension, and obesity. A positive correlation has been found between metabolic syndrome or its components and retinopathy, mainly at microvascular level, in patients without a history of diabetes. Here, we extend the investigations beyond the vascular component analyzing functional changes as well as neuronal and glial response in retinas of Apolipoprotein E knockout (ApoE-KO) mice fed with 10% w/v fructose diet. Given that autophagy dysfunction is implicated in retinal diseases related to hyperglycemia and dyslipidemia, the activation of this pathway was also analyzed. Two months of fructose intake triggered metabolic derangements in ApoE-KO mice characterized by dyslipidemia, hyperglycemia and hyperinsulinemia. An increased number of TUNEL positive cells, in addition to the ganglion cell layer, was observed in the inner nuclear layer in retina. Vascular permeability, evidenced by albumin-Evans blue leakage and extravasation of albumin was also detected. Furthermore, a significant decrease of the glial fibrillary acidic protein expression was confirmed by Western blot analysis. Absence of both Müller cell gliosis and pro-angiogenic response was also demonstrated. Finally, retinas of ApoE-KO FD mice showed defective autophagy activation as judged by LC3B mRNA and p62 protein levels correlating with the increased cell death. These results demonstrated that FD induced in ApoE-KO mice biochemical alterations compatible with metabolic syndrome associated with neuronal impairment and mild vascular alterations in the retina.

6.
Front Cell Neurosci ; 13: 279, 2019.
Article in English | MEDLINE | ID: mdl-31297049

ABSTRACT

Hypoxia is one of the main insults in proliferative retinopathies, leading to neovascularization and neurodegeneration. To maintain homeostasis, neurons require efficient degradation and recycling systems. Autophagy participates in retinal cell death, but it is also a cell survival mechanism. Here, we analyzed the role of autophagy at the three characteristic time periods in the oxygen-induced retinopathy (OIR) mouse model and determined if its modulation can improve vascular and non-vascular alterations. Experiments were performed with chloroquine (CQ) in order to monitor autophagosome accumulation by lysosomal blockade. Post natal day (P)17 OIR mouse retinas showed a significant increase in autophagy flux. In particular, an intense LC3B and p62 staining was observed in inner layers of the retina, mainly proliferating endothelial cells. After a single intraocular injection of Rapamycin at P12 OIR, a decreased neovascular area and vascular endothelial growth factor (VEGF) protein expression were observed at P17 OIR. In addition, whereas the increased expression of glial fibrillary acidic protein (GFAP) was reversed at P26 OIR, the functional alterations persisted. Using a similar therapeutic schedule, we analyzed the effect of anti-VEGF therapy on autophagy flux. Like Rapamycin, VEGF inhibitor treatment not only reduced the amount of neovascular tufts, but also activated autophagy flux at P17 OIR, mainly in ganglion cell layer and inner nuclear layer. Finally, the effects of the disruption of autophagy by Spautin-1, were evaluated at vascular, glial, and neuronal levels. After a single dose of Spautin-1, Western blot analysis showed a significant decrease in LC3B II and p62 protein expression at P13 OIR, returning both autophagy markers to OIR control levels at P17. In addition, neither gliosis nor functional alterations were attenuated. In line with these results, TUNEL staining showed a slight increase in the number of positive cells in the outer nuclear layer at P17 OIR. Overall, our results demonstrate that all treatments of induction or inhibition of the autophagic flux reduced neovascular area but were unable to completely reverse the neuronal damage. Besides, compared to current treatments, rapamycin provides a more promising therapeutic strategy as it reduces both neovascular tufts and persistent gliosis.

7.
Eur J Neurosci ; 47(12): 1429-1443, 2018 06.
Article in English | MEDLINE | ID: mdl-29790615

ABSTRACT

Müller glial cells (MGCs) are known to participate actively in retinal development and to contribute to homoeostasis through many intracellular mechanisms. As there are no homologous cells in other neuronal tissues, it is certain that retinal health depends on MGCs. These macroglial cells are located at the centre of the columnar subunit and have a great ability to interact with neurons, astrocytes, microglia and endothelial cells in order to modulate different events. Several investigations have focused their attention on the role of MGCs in diabetic retinopathy, a progressive pathology where several insults coexist. As expected, data suggest that MGCs display different responses according to the severity of the stimulus, and therefore trigger distinct events throughout the course of the disease. Here, we describe physiological functions of MGCs and their participation in inflammation, gliosis, synthesis and secretion of trophic and antioxidant factors in the diabetic retina. We invite the reader to consider the protective/deleterious role of MGCs in the early and late stages of the disease. In the light of the results, we open up the discussion around and ask the question: Is it possible that the modulation of a single cell type could improve or even re-establish retinal function after an injury?


Subject(s)
Diabetic Retinopathy , Ependymoglial Cells/physiology , Gliosis , Inflammation , Nerve Growth Factors/physiology , Oxidative Stress/physiology , Animals , Diabetic Retinopathy/immunology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/physiopathology , Ependymoglial Cells/immunology , Ependymoglial Cells/metabolism , Gliosis/immunology , Gliosis/metabolism , Gliosis/physiopathology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/physiopathology , Nerve Growth Factors/immunology , Nerve Growth Factors/metabolism , Oxidative Stress/immunology
8.
Mol Neurobiol ; 55(2): 1123-1135, 2018 02.
Article in English | MEDLINE | ID: mdl-28097474

ABSTRACT

In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Receptor, IGF Type 1/metabolism , Retina/metabolism , Retinal Neovascularization/metabolism , Animals , Cell Line , Disease Models, Animal , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Glutamate-Ammonia Ligase/metabolism , Humans , Mice , Oxygen , Retina/pathology , Retinal Neovascularization/etiology , Retinal Neovascularization/pathology
9.
Oncotarget ; 8(20): 32505-32522, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28455954

ABSTRACT

Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.


Subject(s)
Galectin 1/metabolism , Retinitis Pigmentosa/genetics , Animals , Disease Models, Animal , Humans , Mice , Phenotype , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...