Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
J Clin Pharmacol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189980

ABSTRACT

This study investigates the influence of pregnancy on the in vivo activity of the intestinal P-glycoprotein (P-gp) and hepatic organic anion transporters polypeptide (OATP/BCRP) using, respectively, fexofenadine and rosuvastatin as probe drugs. Eleven healthy participants were investigated during the third trimester of pregnancy (Phase 1, 28 to 38 weeks of gestation) and in the postpartum period (Phase 2, 8 to 12 weeks postpartum). In both phases, after administration of a single oral dose of fexofenadine (60 mg) and rosuvastatin (5 mg), serial blood samples were collected for up to 24 h. Rosuvastatin and fexofenadine in plasma were analyzed by LC-MS/MS using previously validated methods. The pharmacokinetic parameters of fexofenadine and rosuvastatin (Phoenix WinNonLin software) with normal distribution (Shapiro-Wilk test) are presented as geometric mean and 90% confidence interval. Phases 1 and 2 were compared using the t test (P < .05). Fexofexadine AUC0-24 values do not differ (P-value: .0715) between Phase 1 (641.9 ng h/mL [500.6-823.1]) and Phase 2 (823.8 ng h/mL [641.5-1057.6]) showing that pregnancy (third trimester) does not alter intestinal P-gp activity. However, rosuvastatin AUC0-24 values are higher (P-value: .00005) in Phase 1 (18.7 ng h/mL [13.3-26.4]) when compared to Phase 2 (9.5 ng h/mL [6.7-13.4]), suggesting inhibition of OATP1B1/OATP1B3 transporters. In conclusion, pregnancy assessed during the third trimester does not alter the intestinal P-gp activity but reduces the activity of hepatic OATP1B1/OATP1B3 transporters. Therefore, adjustments in dosage regimens may be necessary for drugs with low therapeutic index, substrates of the OATP1B1/OATP1B3 transporters, administered during the third trimester of pregnancy.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39065716

ABSTRACT

This study aims to evaluate the impact of liver fibrosis stages of chronic infection with hepatitis C virus (HCV) on the in vivo activity of organic cation transporters (hepatic OCT1 and renal OCT2) using metformin (MET) as a probe drug. Participants allocated in Group 1 (n = 15, mild to moderate liver fibrosis) or 2 (n = 13, advanced liver fibrosis and cirrhosis) received a single MET 50 mg oral dose before direct-acting antiviral (DAA) drug treatment (Phase 1) and 30 days after achieving sustained virologic response (Phase 2). OCT1/2 activity (MET AUC0-24) was found to be reduced by 25% when comparing the two groups in Phase 2 (ratio 0.75 (0.61-0.93), p < 0.05) but not in Phase 1 (ratio 0.81 (0.66-0.98), p > 0.05). When Phases 1 and 2 were compared, no changes were detected in both Groups 1 (ratio 1.10 (0.97-1.24), p > 0.05) and 2 (ratio 1.03 (0.94-1.12), p > 0.05). So, this study shows a reduction of approximately 25% in the in vivo activity of OCT1/2 in participants with advanced liver fibrosis and cirrhosis after achieving sustained virologic response and highlights that OCT1/2 in vivo activity depends on the liver fibrosis stage of chronic HCV infection.

3.
J Am Chem Soc ; 146(9): 6189-6198, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38386630

ABSTRACT

Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.


Subject(s)
Biological Products , Polyketides , Fungi/genetics , Saccharomyces cerevisiae/metabolism , Polyketide Synthases/metabolism , Polyketides/chemistry , Biological Products/metabolism
4.
Fitoterapia ; 171: 105706, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852387

ABSTRACT

The present work reports the effects of chemical elicitors and epigenetic modifiers on the production and diversification of secondary metabolites produced by Anthostomella brabeji - an endophytic fungus isolated from Paepalanthus planifolius (Eriocaulaceae). The fungus was cultivated under four different small-scale culture conditions in potato dextrose broth (PDB): PDB (control), PDB + Mg+2, PDB + Cu+2 and PDB + 5-AZA (5-azacytidine). The incorporation of Cu+2 into PDB medium yielded the most promising results as the most significant differences in the metabolic profile of A. brabeji were observed under this condition. The chemical analysis of the PDB + Cu+2 extract resulted in the isolation of seven metabolites, including three new benzofuran derivatives (2, 4 and 6) and four known compounds (1, 3, 5 and 7). The metabolites were tested using the Gram-positive bacterium Staphylococcus aureus, Gram-negative bacteria Salmonella sp. and Escherichia coli, and six yeasts of Candida albicans and non-albicans. The EtOAc extract (PDB + Cu+2), and compounds 1, 2 and 7 exhibited relevant antifungal activity against Candida spp., with minimum inhibitory concentration ranging from 62.5 to 500.0 µg/mL.


Subject(s)
Ascomycota , Eriocaulaceae , Copper , Molecular Structure , Plant Extracts/chemistry
5.
J Nat Prod ; 86(8): 2065-2072, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37490470

ABSTRACT

Metabolomics analyses and improvement of growth conditions were applied toward diversification of phomactin terpenoids by the fungus Biatriospora sp. CBMAI 1333. Visualization of molecular networking results on Gephi assisted the observation of phomactin diversification and guided the isolation of new phomactin variants by applying a modified version of chemometrics based on a fractional factorial design. Consequentially, the first nitrogen-bearing phomactin, phomactinine (1), with a new rearranged carbon skeleton, was isolated and identified. The strategy combining metabolomics and chemometrics can be extended to include bioassay potency, structure novelty, and metabolic diversification connected or not to genomic analyses.


Subject(s)
Ascomycota , Ascomycota/chemistry , Molecular Structure
7.
J Nat Prod ; 86(6): 1476-1486, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37289832

ABSTRACT

Bioassay-guided investigation of the EtOAc-soluble extract of a culture of the marine-derived fungus Peroneutypa sp. M16 led to the isolation of seven new polyketide- and terpenoid-derived metabolites (1, 2, 4-8), along with known polyketides (3, 9-13). Structures of compounds 1, 2, and 4-8 were established by analysis of spectroscopic data. Absolute configurations of compounds 1, 2, 4, 6, 7, and 8 were determined by the comparison of experimental ECD spectra with calculated CD data. Compound 5 exhibited moderate antiplasmodial activity against both chloroquine-sensitive and -resistant strains of Plasmodium falciparum.


Subject(s)
Polyketides , Xylariales , Polyketides/chemistry , Terpenes/chemistry , Molecular Structure , Plant Extracts
8.
J Clin Pharmacol ; 63(9): 1053-1060, 2023 09.
Article in English | MEDLINE | ID: mdl-37260039

ABSTRACT

This work aimed to evaluate the total, unbound, renal, and hepatic clearances of raltegravir (RAL) and the formation and elimination clearances of raltegravir glucuronide (RAL GLU) in pregnant women living with HIV. The participants received RAL 400 mg twice daily during the third trimester (n = 15) of gestation, delivery (n = 15), and the postpartum period (n = 8). Pharmacokinetic parameter values were calculated on the basis of plasma and urine data using noncompartmental methods. RAL clearances for the third trimester of gestation were as follows: total clearance: geometric mean, 63.63 L/h (95% CI, 47.5-85.25); renal clearance: geometric mean, 2.56 L/h (95% CI, 1.96-3.34); hepatic clearance: geometric mean, 60.52 L/h (95% CI, 44.65-82.04); and unbound clearance: geometric mean, 281.14 L/h (95% CI, 203.68-388.05). RAL GLU formation and elimination clearances for the third trimester of gestation were 7.57 L/h (95% CI, 4.94-11.6) and 8.71 L/h (95% CI, 6.71-11.32), respectively. No differences were observed in RAL GLU pharmacokinetic parameters between the third trimester of gestation and the postpartum period, except for higher formation (7.57 vs 4.03 L/h) and elimination (8.71 vs 4.92 L/h) clearances during the third trimester. The findings based on plasma and urine data are consistent with an increase in the hepatic uridine 5' diphospho-glucuronosyltransferase isoenzymes activities involved in RAL metabolism during pregnancy, and the formation of RAL GLU is a minor route of RAL elimination. Compared to the postpartum period, in the third trimester of gestation, the similar RAL plasma exposure in pregnant women reinforces the maintenance of an RAL regimen including a 400-mg oral dose twice daily during pregnancy.


Subject(s)
Glucuronides , HIV Infections , Female , Humans , Pregnancy , Raltegravir Potassium/pharmacokinetics , Pregnant Women , HIV Infections/drug therapy , Postpartum Period
9.
Planta Med ; 88(12): 994-1003, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35045581

ABSTRACT

As part of our continuing efforts to discover new bioactive compounds from endophytic fungal sources, we have investigated the extract of the Paraphaeosphaeria sporulosa F03 strain. The study led to the isolation of four new 3-methyl-isoquinoline alkaloids (1:  - 4: ) and four known polyketides (5:  - 8: ). The structures of compounds 1:  - 4: were elucidated by 1D and 2D NMR experiments and HRMS analysis. The absolute configuration of 4: was determined by comparison of its experimental electronic circular dichroism spectrum with calculated data. Compounds 1:  - 4: exhibited antifungal activity with minimal inhibitory concentration values ranging from 6.25 - 50 µg/mL against six Candida species but they did not present any cytotoxic activity against the human tumor cell lines A549 (lung), MCF-7 (breast), and HepG2 (hepatocellular). In addition, compound 4: exhibited antiplasmodial activity in the low micromolar range (IC50 = 4 µM).


Subject(s)
Alkaloids , Antimalarials , Eriocaulaceae , Polyketides , Antifungal Agents/pharmacology , Antimalarials/pharmacology , Ascomycota , Endophytes/chemistry , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Molecular Structure , Plant Extracts , Polyketides/chemistry , Polyketides/pharmacology
10.
J Chem Ecol ; 45(9): 789-797, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31422514

ABSTRACT

Peritassa campestris (Celastraceae) root bark accumulates potent antitumor quinonemethide triterpenes (QMTs). When grown in their natural habitat, plants of the family Celastraceae produce different QMTs such as celastrol (3) and pristimerin (4). However, when they are inserted in in vitro culture systems, they accumulate maytenin (1) as the main compound. Recently, Bacillus megaterium was detected as an endophytic microorganism (EM) living inside P. campestris roots cultured in vitro. We hypothesized that compound (1) controls EM growth more efficiently, and that the presence of EMs in the root culture causes compound (1) to accumulate. For the first time, this work has explored plant-microorganism interaction in a species of the family Celastraceae by co-culture with an EM. Live endophytic bacteria were used, and QMT accumulation in P. campestris adventitious roots was our main focus. The antimicrobial activity of the main QMTs against endophytic B. megaterium was also evaluated. Our results showed that compound (1) and maytenol (5) were more effective than their precursors QMTs (3) and (4) in controlling the EM. Co-culture of B. megaterium with roots significantly reduced bacterial growth whereas root development remained unaffected. Compound (1) production was 24 times higher after 48 hr in the presence of the highest B. megaterium concentration as compared to the control. Therefore, P. campestris adventitious roots affect the development of the endophyte B. megaterium through production of QMTs, which in turn can modulate production of compound (1).


Subject(s)
Bacillus megaterium/metabolism , Celastraceae/metabolism , Plant Extracts/chemistry , Plant Roots/metabolism , Triterpenes/chemistry , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Endophytes/metabolism , Pentacyclic Triterpenes , Time Factors
11.
Nat Prod Res ; 28(10): 727-31, 2014.
Article in English | MEDLINE | ID: mdl-24568310

ABSTRACT

Essential oil from Cochlospermum regium (Schrank) Pilg. leaves (CR-EO) has been extracted by hydrodistillation; we analysed the CR-EO by gas chromatography coupled with mass spectrometry. We also conducted histochemical analysis on cross-sections of the central vein of young and adult leaves. A total of 32 compounds were qualitatively and quantitatively analysed, which represented 94.87% of the total CR-EO oil content. The CR-EO basically consisted of sesquiterpenes (96.87%); its main component was ß-copaen-4-α-ol (18.73%), followed by viridiflorol (12.67%). The histochemical analyses identified the main classes of compounds present in both young and adult leaves.


Subject(s)
Bixaceae/chemistry , Oils, Volatile/chemistry , Sesquiterpenes/analysis , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry , Terpenes/analysis
12.
Biomed Res Int ; 2013: 485837, 2013.
Article in English | MEDLINE | ID: mdl-24205504

ABSTRACT

Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L⁻¹ IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin--972.11 µ g·g⁻¹ dry weight--was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.


Subject(s)
Celastraceae/growth & development , Culture Media , Seeds/growth & development , Spermidine/analogs & derivatives , Bioreactors , Indolequinones/chemistry , Indolequinones/isolation & purification , Indolequinones/metabolism , Seedlings/growth & development , Spermidine/chemistry , Spermidine/isolation & purification , Spermidine/metabolism , Tandem Mass Spectrometry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL