Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Oncogene ; 34(48): 5912-22, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-25772238

ABSTRACT

The processes associated with transition to castration-resistant prostate cancer (PC) growth are not well understood. Cellular senescence is a stable cell cycle arrest that occurs in response to sublethal stress. It is often overcome in malignant transformation to confer a survival advantage. CCAAT/Enhancer Binding Protein (C/EBP) ß function is frequently deregulated in human malignancies and interestingly, androgen-sensitive PC cells express primarily the liver-enriched inhibitory protein isoform. We found that C/EBPß expression is negatively regulated by androgen receptor (AR) activity and that treatment of androgen-sensitive cell lines with anti-androgens increases C/EBPß mRNA and protein levels. Accordingly, we also find that C/EBPß levels are significantly elevated in primary PC samples from castration-resistant compared with therapy-naive patients. Chromatin immunoprecipitation demonstrated enhanced binding of the AR to the proximal promoter of the CEBPB gene in the presence of dihydroxytestosterone. Upon androgen deprivation, induction of C/EBPß is facilitated by active transcription as evident by increased histone 3 acetylation at the C/EBPß promoter. Also, the androgen agonist R1881 suppresses the activity of a CEBPB promoter reporter. Loss of C/EBPß expression prevents growth arrest following androgen deprivation or anti-androgen challenge. Accordingly, suppression of C/EBPß under low androgen conditions results in reduced expression of senescence-associated secretory genes, significantly decreased number of cells displaying heterochromatin foci and increased numbers of Ki67-positive cells. Ectopic expression of C/EBPß caused pronounced morphological changes, reduced PC cell growth and increased the number of senescent LNCaP cells. Lastly, we found that senescence contributes to PC cell survival under androgen deprivation, and C/EBPß-deficient cells were significantly more susceptible to killing by cytotoxic chemotherapy following androgen deprivation. Our data demonstrate that upregulation of C/EBPß is critical for complete maintenance of androgen deprivation-induced senescence and that targeting C/EBPß expression may synergize with anti-androgen or chemotherapy in eradicating PC.


Subject(s)
Androgens/deficiency , Androgens/pharmacology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cellular Senescence/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms/pathology , Apoptosis/drug effects , Blotting, Western , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Proliferation/drug effects , Chromatin Immunoprecipitation , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Male , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/drug effects , Tumor Cells, Cultured
2.
Leukemia ; 23(2): 365-74, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18987666

ABSTRACT

CCAAT/enhancer-binding protein alpha (C/EBPalpha) is mutated in 10% of acute myeloid leukemias, resulting in either a truncated protein or an altered leucine zipper (C/EBPalphaLZ) that prevents DNA binding. C/EBPalpha induces bcl-2 in cooperation with nuclear factor-kappaB (NF-kappaB) p50 to inhibit apoptosis. We now demonstrate that C/EBPalpha or a C/EBPalphaLZ oncoprotein binds the bcl-2 P2 promoter in chromatin immunoprecipitation assays and induces the promoter dependent on the integrity of a kappaB site. C/EBPalpha expressed as a transgene in B cells binds and activates the bcl-2 promoter, but not in nfkb1-/- mice lacking NF-kappaB p50. Bcl-2 is central to the intrinsic apoptotic pathway, whereas FLICE inhibitory protein (FLIP) modulates caspase-8, the initiator caspase of the extrinsic pathway. C/EBPalpha and C/EBPalphaLZ also bind the FLIP promoter and induce its expression dependent upon NF-kappaB p50. Moreover, induction of FLIP by C/EBPalpha protects splenocytes from Fas ligand-induced apoptosis, but only if p50 is present. We also demonstrate the direct interaction between bacterially produced C/EBPalpha and NF-kappaB p50, mediated by the C/EBPalpha basic region. These findings indicate that C/EBPalpha or its oncoproteins activate the bcl-2 and FLIP genes by tethering to their promoters through bound NF-kappaB p50. Targeting their interaction may favor apoptosis of transformed cells.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...