Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396914

ABSTRACT

In recent years, the relationship between the microbiota and various aspects of health has become a focal point of scientific investigation. Although the most studied microbiota concern the gastrointestinal tract, recently, the interest has also been extended to other body districts. Female genital tract dysbiosis and its possible impact on pathologies such as endometriosis, polycystic ovary syndrome (PCOS), pelvic inflammatory disease (PID), and gynecological cancers have been unveiled. The incursion of pathogenic microbes alters the ecological equilibrium of the vagina, triggering inflammation and compromising immune defense, potentially fostering an environment conducive to cancer development. The most common types of gynecological cancer include cervical, endometrial, and ovarian cancer, which occur in women of any age but especially in postmenopausal women. Several studies highlighted that a low presence of lactobacilli at the vaginal level, and consequently, in related areas (such as the endometrium and ovary), correlates with a higher risk of gynecological pathology and likely contributes to increased incidence and worse prognosis of gynecological cancers. The complex interplay between microbial communities and the development, progression, and treatment of gynecologic malignancies is a burgeoning field not yet fully understood. The intricate crosstalk between the gut microbiota and systemic inflammation introduces a new dimension to our understanding of gynecologic cancers. The objective of this review is to focus attention on the association between vaginal microbiota and gynecological malignancies and provide detailed knowledge for future diagnostic and therapeutic strategies.


Subject(s)
Genital Neoplasms, Female , Microbiota , Ovarian Neoplasms , Female , Humans , Genital Neoplasms, Female/etiology , Genital Neoplasms, Female/therapy , Genital Neoplasms, Female/pathology , Genitalia, Female/pathology , Ovarian Neoplasms/etiology , Ovarian Neoplasms/therapy , Inflammation
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139446

ABSTRACT

Excessive predominance of pathological species in the gut microbiota could increase the production of inflammatory mediators at the gut level and, via modification of the gut-blood barrier, at the systemic level. This pro-inflammatory state could, in turn, increase biological aging that is generally proxied by telomere shortening. In this study, we present findings from a secondary interaction analysis of gut microbiota, aging, and inflammatory marker data from a cohort of patients with different diagnoses of severe mental disorders. We analyzed 15 controls, 35 patients with schizophrenia (SCZ), and 31 patients with major depressive disorder (MDD) recruited among those attending a community mental health center (50 males and 31 females, mean and median age 46.8 and 46.3 years, respectively). We performed 16S rRNA sequencing as well as measurement of telomere length via quantitative fluorescence in situ hybridization and high-sensitivity C-reactive protein. We applied statistical modeling with logistic regression to test for interaction between gut microbiota and these markers. Our results showed statistically significant interactions between telomere length and gut microbiota pointing to the genus Lachnostridium, which remained significantly associated with a reduced likelihood of MDD even after adjustment for a series of covariates. Although exploratory, these findings show that specific gut microbiota signatures overexpressing Lachnoclostridium and interacting with biological aging could modulate the liability for MDD.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Male , Female , Humans , Gastrointestinal Microbiome/genetics , Depressive Disorder, Major/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , In Situ Hybridization, Fluorescence , Aging/genetics , Clostridiales
3.
Front Oncol ; 13: 1225645, 2023.
Article in English | MEDLINE | ID: mdl-37727203

ABSTRACT

Background: Breast cancer (BC) is the second-leading cause of cancer-related death worldwide. This study aimed to investigate the effects of a 12-week home-based lifestyle intervention (based on nutrition and exercise) on gut microbial composition in twenty BC survivors of the MoviS clinical trial (protocol: NCT04818359). Methods: Gut microbiota analysis through 16S rRNA gene sequencing, anthropometrics, Mediterranean Diet (MD) adherence, and cardiometabolic parameters were evaluated before (Pre) and after (Post) the lifestyle intervention (LI). Results: Beneficial effects of the LI were observed on MD adherence, and cardiometabolic parameters (pre vs post). A robust reduction of Proteobacteria was observed after LI, which is able to reshape the gut microbiota by modulating microorganisms capable of decreasing inflammation and others involved in improving the lipid and glycemic assets of the host. A significant negative correlation between fasting glucose and Clostridia_vadinBB60 (r = -0.62), insulin and homeostatic model assessment (HOMA) index and Butyricicoccus genera (r = -0.72 and -0.66, respectively), and HDL cholesterol and Escherichia/Shigella (r = -0.59) have been reported. Moreover, positive correlations were found between MD adherence and Lachnospiraceae_ND3007 (r = 0.50), Faecalibacterium (r = 0.38) and Butyricimonas (r = 0.39). Conclusion: These data suggest that adopting a healthy lifestyle, may contribute to ameliorate several biological parameters that could be involved in the prevention of cancer relapses through the modulation of gut microbiota.

4.
iScience ; 26(10): 107713, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37701569

ABSTRACT

Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNA-seq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes-like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management.

5.
Microorganisms ; 11(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37374945

ABSTRACT

The vaginal microbiota plays a critical role in the health of the female genital tract, and its composition contributes to gynecological disorders and infertility. Lactobacilli are the dominant species in the female genital tract: their production of lactic acid, hydrogen peroxide, and bacteriocins prevents the invasion and growth of pathogenic microorganisms. Several factors such as hormonal changes, age of reproduction, sexual practices, menstrual cycle, pregnancy, and antimicrobial drugs use can cause imbalance and dysbiosis of the vaginal microbiota. This review aims to highlight the impact of the vaginal microbiota in Assisted Reproductive Technology techniques (ART) and it examines the factors that influence the vaginal microbiota, the consequences of dysbiosis, and potential interventions to restore a healthy female genital tract.

6.
Cell Death Discov ; 9(1): 116, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37019893

ABSTRACT

Pancreatic cancer (PC) has a very low survival rate mainly due to late diagnosis and refractoriness to therapies. The latter also cause adverse effects negatively affecting the patients' quality of life, often requiring dose reduction or discontinuation of scheduled treatments, compromising the chances of cure. We explored the effects of a specific probiotic blend on PC mice xenografted with KRAS wild-type or KRASG12D mutated cell lines alone or together with gemcitabine+nab-paclitaxel treatment to then assess tumor volume and clinical pathological variables. Beside a semi-quantitative histopathological evaluation of murine tumor and large intestine samples, histochemical and immunohistochemical analyses were carried out to evaluate collagen deposition, proliferation index Ki67, immunological microenvironment tumor-associated, DNA damage markers and also mucin production. Blood cellular and biochemical parameters and serum metabolomics were further analyzed. 16S sequencing was performed to analyze the composition of fecal microbiota. Gemcitabine+nab-paclitaxel treatment impaired gut microbial profile in KRAS wild-type and KRASG12D mice. Counteracting gemcitabine+nab-paclitaxel- induced dysbiosis through the administration of probiotics ameliorated chemotherapy side effects and decreased cancer-associated stromatogenesis. Milder intestinal damage and improved blood count were also observed upon probiotics treatment as well as a positive effect on fecal microbiota, yielding an increase in species richness and in short chain fatty acids producing- bacteria. Mice' serum metabolomic profiles revealed significant drops in many amino acids upon probiotics administration in KRAS wild-type mice while in animals transplanted with PANC-1 KRASG12D mutated all treated groups showed a sharp decline in serum levels of bile acids with respect to control mice. These results suggest that counteracting gemcitabine+nab-paclitaxel-induced dysbiosis ameliorates chemotherapy side effects by restoring a favorable microbiota composition. Relieving adverse effects of the chemotherapy through microbiota manipulation could be a desirable strategy in order to improve pancreatic cancer patients' quality of life and to increase the chance of cure.

7.
Front Nutr ; 10: 1072334, 2023.
Article in English | MEDLINE | ID: mdl-36860688

ABSTRACT

Introduction: Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that typically involve diarrhea, abdominal pain, fatigue, and weight loss, with a dramatic impact on patients' quality of life. Standard medications are often associated with adverse side effects. Thus, alternative treatments such as probiotics are of great interest. The purpose of the present study was to evaluate the effects of oral administration of Lentilactobacillus kefiri (basonym: Lactobacillus kefiri) SGL 13 and Andrographis paniculata, namely, Paniculin 13™, on dextran sodium sulfate (DSS)- treated C57BL/6J mice. Methods: Colitis was induced by administering 1.5% DSS in drinking water for 9 days. Forty male mice were divided into four groups, receiving PBS (control), 1.5% DSS, Paniculin 13™ and 1.5% DSS + Paniculin 13™. Results: The results showed that body weight loss and Disease Activity Index (DAI) score were improved by Paniculin 13™. Moreover, Paniculin 13™ ameliorated DSS-induced dysbiosis, by modulating the gut microbiota composition. The gene expression of MPO, TNFα and iNOS in colon tissue was reduced and these data matched with the histological results, supporting the efficacy of Paniculin 13™ in reducing the inflammatory response. No adverse effects were associated to Paniculin 13™ administration. Discussion: In conclusion, Paniculin 13™ could be an effective add-on approach to conventional therapies for IBD.

8.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982144

ABSTRACT

Finding new therapeutic approaches towards colorectal cancer (CRC) is of increased relevance, as CRC is one of the most common cancers worldwide. CRC standard therapy includes surgery, chemotherapy, and radiotherapy, which may be used alone or in combination. The reported side effects and acquired resistance associated with these strategies lead to an increasing need to search for new therapies with better efficacy and less toxicity. Several studies have demonstrated the antitumorigenic properties of microbiota-derived short-chain fatty acids (SCFAs). The tumor microenvironment is composed by non-cellular components, microbiota, and a great diversity of cells, such as immune cells. The influence of SCFAs on the different constituents of the tumor microenvironment is an important issue that should be taken into consideration, and to the best of our knowledge there is a lack of reviews on this subject. The tumor microenvironment is not only closely related to the growth and development of CRC but also affects the treatment and prognosis of the patients. Immunotherapy has emerged as a new hope, but, in CRC, it was found that only a small percentage of patients benefit from this treatment being closely dependent on the genetic background of the tumors. The aim of this review was to perform an up-to-date critical literature review on current knowledge regarding the effects of microbiota-derived SCFAs in the tumor microenvironment, particularly in the context of CRC and its impact in CRC therapeutic strategies. SCFAs, namely acetate, butyrate, and propionate, have the ability to modulate the tumor microenvironment in distinct ways. SCFAs promote immune cell differentiation, downregulate the expression of pro-inflammatory mediators, and restrict the tumor-induced angiogenesis. SCFAs also sustain the integrity of basement membranes and modulate the intestinal pH. CRC patients have lower concentrations of SCFAs than healthy individuals. Increasing the production of SCFAs through the manipulation of the gut microbiota could constitute an important therapeutic strategy towards CRC due to their antitumorigenic effect and ability of modulating tumor microenvironment.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Tumor Microenvironment , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology
9.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768173

ABSTRACT

Cancer cachexia is a complex multifactorial syndrome whose hallmarks are weight loss due to the wasting of muscle tissue with or without the loss of adipose tissue, anorexia, systemic inflammation, and multi-organ metabolic alterations, which negatively impact patients' response to anticancer treatments, quality of life, and overall survival. Despite its clinical relevance, cancer cachexia often remains an underestimated complication due to the lack of rigorous diagnostic and therapeutic pathways. A number of studies have shown alterations in gut microbiota diversity and composition in association with cancer cachexia markers and symptoms, thus supporting a central role for dysbiosis in the pathogenesis of this syndrome. Different tools of microbiota manipulation, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been investigated, demonstrating encouraging improvements in cachexia outcomes. Albeit pioneering, these studies pave the way for future research with the aim of exploring the role of gut microbiota in cancer cachexia more deeply and setting up effective microbiota-targeting interventions to be translated into clinical practice.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Probiotics , Humans , Gastrointestinal Microbiome/physiology , Cachexia/therapy , Cachexia/complications , Quality of Life , Probiotics/therapeutic use , Prebiotics , Neoplasms/complications , Neoplasms/therapy , Fecal Microbiota Transplantation , Dysbiosis/complications , Dysbiosis/therapy
11.
Transl Psychiatry ; 12(1): 384, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104346

ABSTRACT

Autism Spectrum Disorder (ASD) is a sex-biased neurodevelopmental disorder with a male to female prevalence of 4:1, characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests or activities. Microbiota alterations as well as signs of neuroinflammation have been also reported in ASD. The involvement of immune dysregulation in ASD is further supported by evidence suggesting that maternal immune activation (MIA), especially during early pregnancy, may be a risk factor for ASD. The present study was aimed at characterizing the effects of MIA on behavior, gut microbiota and neuroinflammation in the mouse offspring also considering the impact of MIA in the two sexes. MIA offspring exhibited significant ASD-like behavioral alterations (i.e., deficits in sociability and sensorimotor gating, perseverative behaviors). The analysis of microbiota revealed changes in specific microbial taxa that recapitulated those seen in ASD children. In addition, molecular analyses indicated sex-related differences in the neuroinflammatory responses triggered by MIA, with a more prominent effect in the cerebellum. Our data suggest that both sexes should be included in the experimental designs of preclinical studies in order to identify those mechanisms that confer different vulnerability to ASD to males and females.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Microbiome , Animals , Autism Spectrum Disorder/complications , Autistic Disorder/etiology , Behavior, Animal , Disease Models, Animal , Female , Male , Mice , Pregnancy
12.
Biomed Pharmacother ; 151: 113163, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35617803

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer. The characteristic excessive stromatogenesis accompanying the growth of this tumor is believed to contribute to chemoresistance which, together with drug toxicity, results in poor clinical outcome. An increasing number of studies are showing that gut microbiota and their metabolites are implicated in cancer pathogenesis, progression and response to therapies. In this study we tested butyrate, a product of dietary fibers' bacterial fermentation, whose anticancer and anti-inflammatory functions are known. We provided in vitro evidence that, beside slowing proliferation, butyrate enhanced gemcitabine effectiveness against two human pancreatic cancer cell lines, mainly inducing apoptosis. In addition, we observed that, when administered to a PDAC mouse model, alone or combined with gemcitabine treatment, butyrate markedly reduced the cancer-associated stromatogenesis, preserved intestinal mucosa integrity and affected fecal microbiota composition by increasing short chain fatty acids producing bacteria and decreasing some pro-inflammatory microorganisms. Furthermore, a biochemical serum analysis showed butyrate to ameliorate some markers of kidney and liver damage, whereas a metabolomics approach revealed a deep modification of lipid metabolism, which may affect tumor progression or response to therapy. Such results support that butyrate supplementation, in addition to conventional therapies, can interfere with pancreatic cancer biology and response to treatment and can alleviate some damages associated to cancer itself or to chemotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Bacteria/metabolism , Butyrates/metabolism , Butyrates/pharmacology , Butyrates/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Gemcitabine , Pancreatic Neoplasms
13.
Sci Rep ; 12(1): 3952, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273317

ABSTRACT

Numerous factors, ranging from genetics, age, lifestyle, and dietary habits to local environments, contribute to the heterogeneity of the microbiota in humans. Understanding the variability of a "healthy microbiota" is a major challenge in scientific research. The gut microbiota profiles of 148 healthy Italian volunteers were examined by 16S rRNA gene sequencing to determine the range and diversity of taxonomic compositions in the gut microbiota of healthy populations. Possible driving factors were evaluated through a detailed anamnestic questionnaire. Microbiota reference intervals were also calculated. A "scaffold" of a healthy Italian gut microbiota composition was identified. Differences in relative quantitative ratios of microbiota composition were detected in two clusters: a bigger cluster (C2), which included 124 subjects, was characterized by more people from the northern Italian regions, who habitually practised more physical activity and with fewer dietary restrictions. Species richness and diversity were significantly higher in this cluster (C2) than in the other one (C1) (C1: 146.67 ± 43.67; C2: 198.17 ± 48.47; F = 23.40; P < 0.001 and C1: 16.88 ± 8.66; C2: 35.01 ± 13.40; F = 40.50; P < 0.001, respectively). The main contribution of the present study was the identification of the existence of a primary healthy microbiological framework that is only marginally affected by variations. Taken together, our data help to contextualize studies on population-specific variations, including marginal aspects, in human microbiota composition. Such variations must be related to the primary framework of a healthy microbiota and providing this perspective could help scientists to better design experimental plans and develop strategies for precision tailored microbiota modulation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Feces/microbiology , Feeding Behavior , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
14.
J Clin Med ; 11(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35160131

ABSTRACT

BACKGROUND AND AIMS: Failure of the embryo to implant causes about three-fourths of lost pregnancies. Female genital tract microbiota has been associated to Assisted Reproductive Technologies (ART) outcomes. The objective of this study was to analyze the microbiota of human cervical swab and to correlate these findings with the ART outcomes. MATERIALS AND METHODS: In this study, 88 cervical swabs were collected from women undergoing ART cycles, with various causes of infertility, at the beginning of the ART protocols. After microbial DNA extraction, V3-V4 variable regions of the 16S rRNA gene were amplified and sequenced on the Illumina MiSeq platform. PEnalized LOgistic Regression Analysis (PELORA) was performed to identify clusters of bacterial populations with differential abundances between patients with unfavorable and favorable pregnancy outcome groups, respectively. RESULTS: We identified a core of microorganisms at lower taxonomic levels that were predictive of women's pregnancy outcomes. Statistically significant differences were identified at species levels with Lactobacillus salivarius, Lactobacillus rhamnosus among others. Moreover the abundance of Lactobacillus crispatus and iners, respectively increased and decreased in favorable group as compared to unfavorable group, resulted within the core of microorganisms associated to positive ART outcome. Although the predominance of lactobacilli is generally considered to be advantageous for ART outcome, we found that also the presence of Bifidobacterium (together with the other lactobacilli) was more abundant in the favorable group. DISCUSSION: Cervix is colonized by microorganisms which can play a role in ART outcomes as seen by an overall decrease in embryo attachment rates and pregnancy rates in both fertile and infertile women. If confirmed in a larger cohort, the abundance of these bacteria can be useful not only as a marker of unfavorable pregnancy outcome but also they may open the way to new interventional strategies based on genital tract microbiota manipulation in order to increase the pregnancy rates in woman undergoing assisted reproductive technologies.

15.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055006

ABSTRACT

Biliary tract cancers (BTC) represent a heterogeneous and aggressive group of tumors with dismal prognosis. For a long time, BTC has been considered an orphan disease with very limited therapeutic options. In recent years a better understanding of the complex molecular landscape of biology is rapidly changing the therapeutic armamentarium. However, while 40-50% of patients there are molecular drivers susceptible to target therapy, for the remaining population new therapeutic options represent an unsatisfied clinical need. The role of immunotherapy in the continuum of treatment of patients with BTC is still debated. Despite initial signs of antitumor-activity, single-agent immune checkpoint inhibitors (ICIs) demonstrated limited efficacy in an unselected population. Therefore, identifying the best partner to combine ICIs and predictive biomarkers represents a key challenge to optimize the efficacy of immunotherapy. This review provides a critical analysis of completed trials, with an eye on future perspectives and possible biomarkers of response.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biliary Tract Neoplasms/therapy , Molecular Targeted Therapy , Precision Medicine , Animals , Antineoplastic Agents, Immunological/pharmacology , Biliary Tract Neoplasms/diagnosis , Biliary Tract Neoplasms/etiology , Biliary Tract Neoplasms/metabolism , Biomarkers, Tumor , Clinical Trials as Topic , Combined Modality Therapy/methods , Disease Management , Disease Susceptibility , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Targeted Therapy/methods , Precision Medicine/methods , Prognosis , Treatment Outcome
16.
Semin Cancer Biol ; 86(Pt 3): 997-1007, 2022 11.
Article in English | MEDLINE | ID: mdl-34838957

ABSTRACT

Microbiota consists of a dynamic organization of bacteria, viruses, archaea, and fungal species involved in a number of vital functions spanning from the digestion of carbohydrates, vitamin synthesis, involvement in immune system to drug metabolism. More than 95 % of microbiota resides within the gut and it is essential for maintaining gut homeostasis. Dysregulation of gut microbiota contributes to the onset of several non-communicable diseases including cancer. Among the latter, pancreatic cancer is catching the attention of scientists around the globe being one of the most aggressive and resistant to therapies positioning the pancreatic cancer as one of the leading causes of death from cancer worldwide. In recent years, several studies have shown that the gut and tumor microbiota play a key role in the development, progression and prognosis of PDAC, mainly due to microbial ability to modulate host immune system and metabolize drugs. This review will focus on the new insights into the role of the microbiota as a new key player in pancreatic cancer PDAC development and prognosis by enlightening the microbial potential to interact with chemo/immunotherapeutic drugs and to modulate tumor microenvironment, thus impacting on cancer therapy success with the aim to pave the way to new integrative and interventional diagnostics or therapeutics approaches to prevent, diagnose and treat pancreatic cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/prevention & control , Tumor Microenvironment , Antineoplastic Agents/therapeutic use , Pancreatic Neoplasms
17.
J Int Soc Sports Nutr ; 18(1): 74, 2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34922581

ABSTRACT

BACKGROUND: The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. METHODS: The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. RESULTS: Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. CONCLUSIONS: Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general.


Subject(s)
Exercise , Gastrointestinal Microbiome , Students/psychology , Diet , Humans , Male , Young Adult
19.
Biomedicines ; 9(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34440078

ABSTRACT

The gut microbiota is constituted by more than 40,000 bacterial species involved in key processes including high order brain functions. Altered composition of gut microbiota has been implicated in psychiatric disorders and in modulating the efficacy and safety of psychotropic medications. In this work we characterized the composition of the gut microbiota in 38 patients with schizophrenia (SCZ) and 20 healthy controls (HC), and tested if SCZ patients with different response to antipsychotics (18 patients with treatment resistant schizophrenia (TRS), and 20 responders (R)) had specific patterns of gut microbiota composition associated with different response to antipsychotics. Moreover, we also tested if patients treated with typical antipsychotics (n = 20) presented significant differences when compared to patients treated with atypical antipsychotics (n = 31). Our findings showed the presence of distinct composition of gut microbiota in SCZ versus HC, with several bacteria at the different taxonomic levels only present in either one group or the other. Similar findings were observed also depending on treatment response and exposure to diverse classes of antipsychotics. Our results suggest that composition of gut microbiota could constitute a biosignatures of SCZ and TRS.

20.
Biomolecules ; 11(5)2021 04 26.
Article in English | MEDLINE | ID: mdl-33925948

ABSTRACT

Chemoresistance is a major problem in the therapeutic management of pancreatic cancer, concurring to poor clinical outcome. A number of mechanisms have been proposed to explain resistance to gemcitabine, a standard of care for this malignancy, among which is included aberrant miRNA expression. In the current study, we investigated the role of miR-217, which is strongly down-regulated in cancerous, compared to normal, pancreatic tissues or cells, in sensitizing human pancreatic cancer cell lines to this drug. The low expression of miR-217 in pancreatic cancer patients was confirmed in two gene expression datasets (GSE41372 and GSE60980), and the prognostic value of two target genes (ANLN and TRPS1), was estimated on clinical data from the Tumor Cancer Genome Atlas (TCGA). Transfecting miR-217 mimic in pancreatic cancer cells reduced viability, enhanced apoptosis, and affected cell cycle by promoting a S phase arrest in gemcitabine-treated cells. Moreover, in drug-exposed cells subjected to miR-217 forced expression, a down-regulation for several genes involved in cancer drug resistance was observed, many of which are cell cycle regulators, such as CCND1, CCNE1, CDK2, CDKN1A, CDKN1B, while others, such as ARNT, BRCA1, BRCA2, ELK1, EGFR, ERBB4, and RARA are involved in proliferation and cell cycle progression. Our results support the notion that miR-217 enhances pancreatic cancer sensitivity to gemcitabine, mainly impairing cell cycle progression.


Subject(s)
Deoxycytidine/analogs & derivatives , MicroRNAs/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Databases, Genetic , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Humans , MicroRNAs/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Gemcitabine , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...